- 重难点01 平行线(四种模型)-【满分全攻略】2022-2023学年七年级数学下学期核心考点+重难点讲练与测试(浙教版) 试卷 2 次下载
- 核心考点02 二元一次方程组-【满分全攻略】2022-2023学年七年级数学下学期核心考点+重难点讲练与测试(浙教版) 试卷 1 次下载
- 第2章 二元一次方程组【单元提升卷】-【满分全攻略】2022-2023学年七年级数学下学期核心考点+重难点讲练与测试(浙教版) 试卷 1 次下载
- 第2章 二元一次方程组(基础、典型、易错、压轴)分类专项训练-【满分全攻略】2022-2023学年七年级数学下学期核心考点+重难点讲练与测试(浙教版) 试卷 2 次下载
- 核心考点03 整式的乘法-【满分全攻略】2022-2023学年七年级数学下学期核心考点+重难点讲练与测试(浙教版) 试卷 1 次下载
初中数学浙教版七年级下册2.4 二元一次方程组的应用一课一练
展开题型一:数字问题
题型二:利润问题
题型三:行程问题
题型四:工程问题
题型五:产品配套问题
题型六:比赛积分问题
题型七:利息税收问题
题型八:方案选择问题
技巧方法
一、数字问题
已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.
二、利润问题
商品利润=商品售价-商品进价;利润率=利润÷进价×100%。
三、行程问题
速度×时间=路程. 顺水速度=静水速度+水流速度. 逆水速度=静水速度-水流速度.
四、工程问题
工作量=工作效率×工作时间,各部分劳动量之和=总量.
五、产品配套问题
解这类问题的基本等量关系是:加工总量成比例.
六、比赛积分问题
在比赛积分问题中,基本相等关系有:
某个队的参赛场数=该队的胜场数+该队的负场数+该队的平场数;
某个队的总积分=该队的胜场积分+该队的负场积分+该队的平场积分.
七、利息税收问题
利息=本金×利率×期数.
本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) .
年利率=月利率×12.
月利率=年利率×1/12.
八、方案选择问题
在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.
要点诠释:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案.
能力拓展
题型一:数字问题
1.一个两位数,其个位数字与十位数字的和是9,将个位数字与十位数字对调后,所得的新数比原数大27,求原来两位数.
2.(2021春•镇海区期末)营养对促进中学生机体健康具有重要意义,现对一份学生快餐进行检测,得到以下信息:
根据上述信息回答下列的问题:
(1)这份快餐中蛋白质和脂肪的质量共 克;
(2)分别求出这份快餐中脂肪、矿物质的质量.
(3)学生每餐膳食中主要营养成分“理想比”为:碳水化合物:脂肪:蛋白质=8:1:9,同时三者含量为总质量的90%.试判断这份快餐中此三种成分所占百分比是否符合“理想比”?如果符合,直接写出这份快餐中碳水化合物、脂肪、蛋白质、矿物质的质量比;如果不符合,求出符合“理想比”的四种成分中脂肪、矿物质的质量(总质量仍为300克).
3.有一个三位数,现将最左边的数字移到最右边,得到的数比原来的数小45,又已知百位数字的9倍比由十位数字和个位数字组成的两位数小3,求原来的三位数.
4.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?
5.(2021秋•新华区校级期中)一个两位数的十位上的数与个位上的数的和是5,如果这个两位数减去27,则恰好等于十位上的数与个位上的数对调后组成的两位数,求这个两位数.
题型二:利润问题
1.(2022秋•洛阳期末)近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员.网友看到苏爷爷的故事,纷纷订购表示支持.已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”).
(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元.求每箱中果和大果的售价分别是多少元?
(2)在(1)的条件下,正常情况平均每周可销售30箱大果.但为了减少库存,苏爷爷决定对大果降价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%.求每箱大果的售价应该降低多少元?
2.(2022春•上蔡县校级月考)洛阳历史文化厚重,既是十三朝古城,又是牡丹花城,许多商品都代表河南特色,某商店需要购进甲、乙两种洛阳特色小商品共180件,其进价和售价如表:
(注:利润=售价﹣进价)
该商店计划销售完这批商品后获得利润1200元,甲,乙两种商品应分别购进多少件?
3.(2022秋•琼海期中)某环卫公司准备购进A,B两种型号的保洁车,若购买3辆A型号和2辆B型号的保洁车需要90万,若购买2辆A型号和3辆B型号的保洁车需要85万,求A,B两种型号的保洁车每辆分别是多少万元?
4.(2022秋•天桥区校级月考)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.求A、B两种奖品单价各是多少元?
5.(2022秋•涪陵区期末)奉节脐橙是全国橙类一流品牌,“园甘长成时,三寸如黄金”是杜甫寄居奉节时赞美奉节脐橙的诗句.果大形正、橙红鲜艳、皮薄肉厚、鲜嫩多汁是奉节脐橙的特色,每年11月底进入成熟期,某水果商预测12月到1月奉节脐橙一定能畅销市场,12月份购进第一批奉节福本和奉节纽荷尔两个品种的脐橙,共用14000元,其中购进奉节福本橙的费用比购进奉节纽荷尔橙的费用少2000元.
(1)求该水果商12月份购进的第一批奉节福本橙和奉节纽荷尔橙分别用了多少钱?
(2)该水果商12月份购进的第一批奉节纽荷尔橙,开售后果然供不应求,全部卖完.1月份该水果商又用6000元购进了第二批奉节纽荷尔橙,但进价比第一批奉节纽荷尔橙的进价上涨了50%,两次购进的奉节纽荷尔橙一共1500千克,求该水果商购进第一批奉节纽荷尔橙的单价是多少元?
6.(2023•南岗区校级开学)某班级为学习成绩进步的学生购买奖品,计划购买同一品牌的钢笔和自动铅笔,到文教店查看定价后发现,购买2支钢笔和5支自动铅笔共需75元,购买3支钢笔和2支自动铅笔共需85元.
(1)求该品牌的钢笔、自动铅笔每支的定价分别是多少元;
(2)经协商,文教店给予该班级购买一支该品牌钢笔赠送一支自动铅笔的优惠,如果该班级需要自动铅笔的支数是钢笔的支数的2倍还多8支,且班级购买钢笔和自动铅笔的总费用少于670元,那么该班级最多可购买多少支该品牌的钢笔?
7.(2022秋•碑林区校级期末)临近期末某班需要购买一些奖品,经过市场考察得知,购买10个钢笔礼盒和1个水杯需要242元,购买1个钢笔礼盒和10个水杯需要341元.
(1)你能求出每个钢笔礼盒、每个水杯各多少元?(用二元一次方程组解)
(2)根据班级情况,需购进钢笔礼盒和水杯共30个,现要求钢笔礼盒的个数不大于购进水杯的2倍,总费用不超过800元,请你通过计算求出有几种购买方案?哪种方案费用最低?
8.(2022秋•渠县期末)正值春夏换季的时节,某商场用12000元分别以每件120元和60元的价格购进了某品牌衬衫和短袖共140件.
(1)商场本次购进了衬衫和短袖各多少件?
(2)若该商场以每件180元的价格销售了衬衫总进货量的25%,将短袖在成本的基础上提价20%销售,在销售过程中,有5件衬衫因损坏无法销售,为了减少库存积压,该商场准备将剩下的衬衫在原售价的基础上降价销售,每件衬衫降价多少元,该商场销售完这批衬衫和短袖正好达到利润25.5%的预期目标.
9.(2022秋•恩施市期末)近年来,北仑春晓名优茶品屡获国际大奖,打响了茶叶区域品牌.甲茶叶店慕名来春晓进货,用4000元购进了A品牌茶叶若干盒,用8000元购进B品牌茶叶若干盒,所购B品牌茶叶比A品牌茶叶多5盒,且B品牌茶叶每盒进价是A品牌茶叶每盒进价的1.6倍.
(1)A,B两种品牌茶叶每盒进价分别为多少元?
(2)乙茶叶店计划用4800元购进A,B两种品牌茶叶试售,要求每种品牌茶叶至少购进1盒且刚好用完购茶款,请你设计进货方案.
10.(2022秋•吉州区期末)某药店出售A、B两种N95的口罩,已知该店进货4个A种N95口罩和2个B种N95口罩共需22元,进货8个A种N95口罩所需费用比进货4个B种N95口罩所需费用多4元.
(1)请分别求出A、B两种N95口罩的进价是多少元?
(2)已知药店将A种N95口罩每个提价1元出售,B种N95口罩每个提价20%出售,小雅在该药店购买A、B两种N95口罩(两种口罩均要购买),共花费40元,小雅有哪几种购买方案?
11.(2022秋•城阳区期末)为喜迎元旦,某超市推出A类礼盒和B类礼盒,每个A类礼盒的成本为120元,每个B类礼盒的成本为160元,每个B类礼盒的售价比每个A类礼盒的售价多80元,售卖2个A类礼盒获得的利润和售卖1个B类礼盒获得的利润相同.
(1)求每个A类礼盒的售价;
(2)该超市购进A类礼盒800个和B类礼盒1000个,进行促销活动.超市规定,每人每次最多购买A类礼盒1个或B类礼盒1个,每个A类礼盒直接参与店内“每满100元减a元”的活动,每个B类礼盒在售价的基础上打九折后再参与店内“每满100元减a元”的活动.活动结束时,所有礼盒全部售卖完.若该超市获得的利润为48800元,求a的值.
12.(2022秋•新华区校级期末)某学校在某药店购买84消毒液和口罩,购买84消毒液共花费900元,购买口罩共花费2160元,购买口罩数量(单位:包)是购买84消毒液数量(单位:瓶)的2倍,且购买一包口罩比购买一瓶84消毒液多花1元.
(1)求购买一瓶84消毒液和一包口罩的单价各是多少元;
(2)按照实际需要每个班须配备84消毒液3瓶,口罩6包用于防疫,则购买的84消毒液和口罩能够配备多少个班级?
13.(2022秋•开福区期末)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买《艾青诗选》和《格列佛游记》两种书共50本.已知购买2本《艾青诗选》和1本《格列佛游记》需100元;购买6本《艾青诗选》与购买7本《格列佛游记》的价格相同,
(1)求这两种书的单价;
(2)若购买《艾青诗选》的数量不少于所购买《格列佛游记》数量的一半,且购买两种书的总价不超过1600元.请问共有几种购买方案?哪种购买方案的费用最低?最低费用为多少元?
14.(2022•德城区模拟)某商场用60个A型包装袋与90个B型包装袋对甲,乙两类农产品进行包装出售(两种型号包装袋都用完),每个A型包装袋装2千克甲类农产品或装3千克乙类农产品,每个B型包装袋装3千克甲类农产品或装5千克乙类农产品,设有x个A型包装袋包装甲类农产品,有y个B型包装袋包装甲类农产品.
(1)请用含x或y的代数式填空完成表:
(2)若甲、乙两类农产品的总质量分别是260千克与210千克,求x,y的值.
(3)若用于包装甲类农产品的B型包装袋数量是用于包装甲类农产品的A型包装袋数量的两倍,且它们数量之和不少于90个,记甲、乙两类农产品的总质量之和为m千克,求m的最小值与最大值.
15.(2022春•忠县校级期中)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)
(1)该商场第1次购进A、B两种商品各多少件?
(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于72000元,则B种商品是打几折销售的?
题型三:行程问题
1.(2021秋•金台区期末)甲、乙两人从相距36km的两地相向而行,如果甲比乙先走2h,那么他们在乙出发2.5h后相遇;如果乙比甲先走2h,那么他们在甲出发3h后相遇,甲、乙两人的速度分别是多少?
2.(2022春•江津区期中)A、B两地相距6km,甲、乙两人从A、B两地同时出发,若同向而行,甲3h可追上乙;若相向而行,1h相遇.求甲、乙两人的平均速度各是多少?
3.(2021秋•广南县期末)如图,已知点A、点B在数轴上表示的数分别是﹣20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?
4.(2022•二道区校级开学)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.
(1)求线段MN的长度;
(2)根据第(1)题的计算过程和结果,设AC=a,BC=b,其他条件不变,则MN= ;
(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动.设点P的运动时间为t(5),当C、P、Q三点中,有一点恰好是以另外两点为端点的线段的中点时,请直接写出时间t的值.
5.(2021秋•惠民县期末)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.
请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.
6.(2022春•海州区期末)某隧道长1200m,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.
7.(2022春•顺城区期末)A地至B地的航线长9750km,一架飞机从A地顺风飞往B地需12.5h,它逆风飞行同样的航线需13h,求飞机无风时的平均速度与风速.
题型四:工程问题
1.(2022春•衡阳县期中)深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?
2.(2022春•杭州月考)某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.
(1)甲、乙两组工作一天,商店各应付多少钱?
(2)现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲,乙两组合做.若装修完后,商店每天可盈利200元,你认为如何安排施工有利于商店经营?说说你的理由.
3.(2022春•淇滨区期末)2022年2月,全国爱卫会发布了关于2021年度国家卫生城镇复审结果的通报,驻马店市以优异成绩通过复审测评,再次被确认为“国家卫生城市”,在“创卫”过程中,有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成甲工程队每天整治8米,乙工程队每天整治12米,共用时20天,求甲、乙两工程队分别整治河道多少米.
(1)小明、小华两位同学提出的解题思路如下:
小明同学:
设整治任务完成后,甲工程队整治河道x米,乙工程队整治河道y米.
根据题意,得.
小华同学:
设整治任务完成后,m表示 ,n表示 .
根据题意,得:.
请你补全小明、小华两位同学的解题思路.
(2)请从(1)中任选一个解题思路写出完整的解答过程.
4.(2022春•丹江口市期末)“十淅高速”项目工程建设已近尾声,其中某施工路段总长90公里,若由甲、乙两工程队合做6个月可以完成,若甲工程做4个月,乙工程队做9个月也可以完成.
(1)甲、乙两队每月的施工路段各是多少公里?
(2)已知甲队每月施工费用为12万元,乙队每月施工费用为9万元,按要求该工程总费用不超过130万元,工程必须在10个月内竣工.为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,请你设计施工费用最低的施工方案.
5.(2022春•定陶区期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
(1)甲、乙两组工作一天,商店各应付多少钱?
(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?
(3)若装修完后,商店每天可盈利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
6.(2021春•奉化区校级期末)玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.
(1)如果从节约时间的角度考虑应选哪家公司?
(2)如果从节约开支的角度考虑呢?请说明理由.
题型五:产品配套问题
1.(2022春•南关区校级月考)一套仪器由2个A部件和5个B部件构成.用1m3钢材可做40个A部件或200个B部件,现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好能使这种仪器刚好配套?
2.(2021秋•长兴县月考)有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.
(1)求每箱装多少件产品?
(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?
(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).
3.(2022•卫辉市校级模拟)微量元素是人体内重要的物质,经研究发现,孩子缺锌会导致厌食,影响其身体的生长发育.某公司决定利用甲、乙两种含锌食材为孩子们加工一种精美小食品,该食品的营养成分与配料表如下:
已知甲食材的进价为10元/千克,乙食材的进价为5元/千克,该公司每天用4000元购进甲、乙两种食材并恰好全部用完(不计损耗).
(1)该公司每天购进甲、乙两种食材各多少千克?
(2)公司决定对该小食品采用A、B两种包装,A包装:每包重1千克,单价15元;B包装:每包重0.25千克,单价4元.已知公司每天其他费用为1000元,且生产的食品当天全部卖出.若A包装的数量不低于B包装的数量,则A包装为多少包时,每天所获总利润最大?最大利润为多少元?
4.(2022•锡山区校级模拟)某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?
5.(2021秋•梁河县期末)某工厂生产茶具,每套茶具由1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?
6.(2020秋•肥东县期末)在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.
(1)求这个班男生、女生各有多少人?
(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?
题型六:比赛积分问题
1.(2022春•漳州期末)篮球赛单循环赛一般按积分确定名次.胜一场得2分,负一场得1分.某次篮球联赛中,太阳队目前的战绩是7胜5负,后面还要比赛13场.若太阳队的最终得分为40分,求太阳队一共胜了几场?
2.(2022春•中山市期末)在某次知识竞赛中,甲、乙两人轮流答题,每人都要回答20道题,每道题回答正确得m分,回答错误或放弃回答扣n分.当甲、乙两人恰好都答完12道题时,甲答对了9道题,得分为45分;乙答对了10道题,得分为54分.
(1)求m和n的值;
(2)假如最后得分不低于70分就能晋级,甲在剩下的比赛中至少还要答对多少道题才能顺利晋级?
3.(2020春•广丰区校级期末)有一场足球比赛,共有九支球队参加,采取单循环赛,其记分和奖励方案如表:
甲队参加完了全部8场比赛,共得积分16分.
(1)求甲队胜负的所有可能情况;
(2)若每一场比赛,每一个参赛队员均可得出场费500元,求甲队参加了所有8场比赛的队员的个人总收入(奖金加上出场费).
4.(2020春•梁溪区期中)今年学校举行足球联赛,在第一阶段的比赛中,每队都进行了8场比赛,小虎足球队胜了4场,平2场,负2场,得14分;小豹足球队胜了6场,平1场,负1场,得19分.已知,记分规则中,负1场得0分.
(1)求胜1场、平1场各得多少分?
(2)足球联赛结束后,小狮足球队共参加了17场比赛,得了24分,且踢平场数是所胜场数的正整数倍,请你想一想,小狮足球队所负场数有 种可能性.
题型七:利息税收问题
1.某市房屋开发公司向中国建设银行贷年利率分别为6%和8%的甲乙两种款500万,一年应付出的利息共34万,求两种贷款的数额各是多少?
2.东风棉纺厂为适应市场需求,新上一条生产流水线,分别向银行申请甲、乙两种贷款共18万元,每年共需付利息9400元.已知甲种贷款的年利率为5.8%,乙种贷款的年利率为4.5%.请问甲、乙两种贷款分别为多少万元?
3.福建欣欣电子有限公司向工商银行申请了甲、乙两种贷款,共计68万元,每年需付出利息8.42万元.甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?
4.某人以两种形式储蓄了200元钱,一种储蓄的年利率是5%,另一种是6%,一年后共得利息11元,问这两种储蓄各存了多少元钱?
5.王先生手中有30000元钱,想买年利率为2.89%的三年期国库券,到银行时,银行所剩国库券已不足30000元,王先生全部买下这部分国库券后,余下的钱改存三年定期银行存款,年利率为2.7%,且到期要缴纳20%的利息税.三年后,王先生得到的本息和为32338.2元.王先生到底买了多少元国库券,在银行存款又是多少元?
题型八:方案选择问题
1.(2022春•舒城县校级月考)某社区拟建甲.乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地14平方米,2个甲类摊位和3个乙类摊位共占地24平方米.
(1)求每个甲、乙类摊位占地各为多少平方米?
(2)该社区拟建甲、乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?
(3)在(2)的条件下,某社区最多用454平方米拟建甲、乙两类摊位,若建甲类摊位每个需要3000元,乙类摊位每个需要2200元,共有几种建造方案?哪种方案最省钱?
2.(2022春•沭阳县月考)2022年上半年在抗击新冠肺炎疫情期间,全国上下万众一心为上海捐赠物资.某物流公司运送捐赠物资,已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.
(1)求1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)该物流公司现有80吨货物需要运送,计划同时租用A型车a辆,B型车b辆(每种车辆至少1辆且A型车数量少于B型车),一次运完且恰好每辆车都装满货物.请问有哪几种租车方案?
3.(2022春•渝中区校级月考)北京冬奥会,给世界一个温暖的拥抱;北京冬奥会,让世界见证了中国科技和中国智慧;北京冬奥会,让世界记住了一个冬奥明星“冰墩墩”.某商场为了跟上冬奥的脚步,计划用1050元从厂家购进30个冰墩墩产品,已知该厂家生产冰墩墩钥匙扣、冰墩墩手办、冰墩墩挎包三种不同的冰墩墩产品,设冰墩墩手办、冰墩墩挎包应各买入x,y个,其中每个的价格、销售获利如表:
(1)购买冰墩墩钥匙扣 个(用含x,y的代数式表示);
(2)若商场同时购进三种不同的冰墩墩产品(每种产品至少有一个),恰好用了1050元,则商场有哪几种购进方案?
(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?
4.(2022春•兴化市月考)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.
(1)请问1辆A货车与1辆B货车一次可以分别运货多少吨?
(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费400元,每辆B货车一次运货花费350元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
5.(2022春•盐都区月考)根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高 cm,放入一个大球水面升高 cm;
(2)如果放入10个球,使水面上升到50cm,应放入大球、小球各多少个?
(3)现放入若干个球(两种球均放),使水面升高到时51cm,且小球个数为偶数个,问有几种可能,请一一列出(写出结果即可).
6.(2022春•西城区校级期中)某居民在新房装修后,购买了家居用品的清单如表,部分信息因污迹无法识别,请根据下表解决问题.
(1)直接写出a= ,b= ;
(2)该居民购买了垃圾桶,塑料鞋架各几个?(用方程解答这个问题)
(3)若干天后,该居民再次购买艺术饰品和垃圾桶两种家居用品(两种物品至少各买1个),共花费105元,则有哪几种不同的购买方案?直接将方案列举出来.
7.(2022春•海淀区校级期中)某中学为了响应习主席提出的“足球进校园”的号召,开设了“足球大课间活动”,为此购买A种品牌的足球25个,B种品牌的足球50个,共花费4500元;已知A种品牌足球的单价比B种品牌足球的单价高30元.
(1)求A、B两种品牌足球的单价各多少元?
(2)根据需要,学校决定再次购进A、B两种品牌的足球50个,正逢体育用品商店“优惠促销”活动,A种品牌的足球单价打8折,B种品牌的足球单价优惠4元.如果此次学校购买A、B两种品牌足球的总费用不超过2750元,且购买A种品牌的足球不少于23个,则有几种购买方案?为了节约资金,学校应选择哪种方案?为什么?
8.(2022春•泉州期中)在我市创建全国卫生城市活动中,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买1个温馨提示牌和2个垃圾箱共需350元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
①快餐总质量为300克.
②快餐的成分:碳水化合物、脂肪、蛋白质、矿物质.
③蛋白质和脂肪共占50%;矿物质的含量是蛋白质含量的;蛋白质和碳水化合物含量共占70%.
甲
乙
进价(元/件)
12
35
售价(元/件)
18
47
包装袋型号
A
B
甲类农产品质量(千克)
2x
乙类农产品质量(千克)
5(90﹣y)
商品
价格
A
B
进价(元/件)
1200
1000
售价(元/件)
1350
1200
营养成分
每千克含锌14毫克
配料表
原料
每千克含锌量
甲食材
20毫克
乙食材
5毫克
标准
胜一场
平一场
负一场
积分
3
1
0
奖励(元/人)
2000
800
0
冰墩墩钥匙扣
冰墩墩手办
冰墩墩挎包
价格(元/个)
25
40
50
销售获利(元/个)
12
15
20
家居用品名称
单价(元)
数量(个)
金额(元)
挂钟
30
2
60
垃圾桶
15
塑料鞋架
40
艺术饰品
a
2
90
电热水壶
35
1
b
合计
8
280
浙教版七年级下册3.7 整式的除法当堂检测题: 这是一份浙教版七年级下册<a href="/sx/tb_c12146_t7/?tag_id=28" target="_blank">3.7 整式的除法当堂检测题</a>,文件包含核心考点05整式除法原卷版docx、核心考点05整式除法解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
浙教版七年级下册3.4 乘法公式练习: 这是一份浙教版七年级下册<a href="/sx/tb_c12149_t7/?tag_id=28" target="_blank">3.4 乘法公式练习</a>,文件包含核心考点03整式的乘法原卷版docx、核心考点03整式的乘法解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。
期中模拟预测卷02(测试范围:前三章)-【满分全攻略】2022-2023学年七年级数学下学期核心考点+重难点讲练与测试(浙教版): 这是一份期中模拟预测卷02(测试范围:前三章)-【满分全攻略】2022-2023学年七年级数学下学期核心考点+重难点讲练与测试(浙教版),文件包含期中模拟预测卷02原卷版docx、期中模拟预测卷02解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。