







还剩13页未读,
继续阅读
所属成套资源:湘教版八年级数学下册【精品教学课件】
成套系列资料,整套一键下载
湘教版八年级数学下册 第3章 图形与坐标第3课时 综合平移的坐标表示(课件)
展开
这是一份湘教版八年级数学下册 第3章 图形与坐标第3课时 综合平移的坐标表示(课件),共21页。
综合平移的坐标表示湘教·八年级下册复习回顾思考:什么叫平移?平移后得到的新图形与原图形有什么关系? 把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移. 平移后图形只改变位置,形状、大小不变.探究新知 如图,△ABC的顶点坐标分别为A(-4,-1),B(-5,-3),C(-2,-4).将△ABC向右平移7 个单位,它的像是△A1B1C1;再向上平移5个单位,△A1B1C1的像是△A2B2C2.ABCA1B1C1A2B2C2(1)分别写出△A1B1C1,△A2B2C2的顶点坐标;ABCA1B1C1A2B2C2A1(3,-1)B1(2,-3)C1(5,-4)A2(3,4)B2(2,2)C2(5,1)ABCA1B1C1A2B2C2(2)将△ABC作沿射线AA2的方向的平移,移动的距离等于线段AA2的长度,则△ABC的像是△A2B2C2吗?解:在这个平移下, 点A(-4,-1)的像是点A2(3,4). 点A2的横坐标是3 =(-4)+ 7,点A2的纵坐标是4 =(-1)+ 5.ABCA1B1C1A2B2C2因此在这个平移下,平面内任一点P(x,y)与其像点P′(x′,y′) 的坐标有如下关系:按照这个关系,点B(-5,-3) 的像点的坐标为(2,2),从而点B的像点是B2;点C(-2,-4) 的像点的坐标为(5,1),从而点C的像点是C2. 因此△ABC的像是△A2B2C2,如图.总结归纳图形平移的方向与距离图形上点的平移的方向与距离点平移时 坐标变化规律图形上点的坐标变化 如图,四边形ABCD四个顶点坐标分别为A(1,2),B(3,1),C(5,2),D(3,4).将四边形ABCD先向下平移5个单位,再向左平移6个单位,它的像是四边形A′B′C′D′,写出四边形A′B′C′D′的顶点坐标,并作出该四边形.【教材P101页】解:四边形ABCD先向下平移5个单位,再向左平移6个单位,在这个平移下,平面内任一点P(x,y)与其像点P′(x′,y′)的坐标有如下关系:按照这个关系,由点A,B,C,D的坐标可知其像的坐标分别是A′(-5,-3),B′(-3,-4),C′(-1,-3),D′(-3,-1). 依次连接点A′,B′,C′,D′,即得四边形A′B′C′D′, 如图.练习 如图,菱形ABCD四个顶点的坐标分别为A(4,7),B(2,4), C(4,1),D(6,4). 将菱形ABCD向下平移3个单位,它的像是菱形A′B′C′D′. 写出菱形A′B′C′D′的顶点坐标,并作出该图形. 将菱形A′B′C′D′向左平移6个单位,它的像是菱形A″B″C″D″,写出菱形A″B″C″D″的顶点坐标,并作出该图形.【教材P101页】A′(4,4)B′(2,1)C′(4,-2)D′(6,1)A″(-2,4)B″(-4,1)C″(-2,-2)D″(0,1)随堂练习1.已知三角形的三个顶点坐标分别是(-1,4),(5,5),(2,9),现将这三个点先向左平移1个单位长度,再向下平移2个单位长度,则平移后三个顶点的坐标是( )A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)B2.三角形DEF是由三角形ABC平移得到的,点A(-1,-4)的对应点为D(1,-1),则点B(1,1)的对应点E、点C(-1,4)的对应点F的坐标分别为( )A.(2,2),(3,4) B.(3,4),(1,7)C.(-2,2),(1,7) D.(3,4),(2,-2)B3.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到Q(x,-1),则xy=______.-104.如图所示的四边形是将坐标(0,0),(1,2),(-1,3),(-2,1)的点用线段依次连接而成的,将这四个点的坐标作如下变化,横坐标分别加3,纵坐标分别减2,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么关系?解:变化后的坐标依次为(3,-2),(4,0),(2,1),(1,-1).将各点用线段依次连接起来,所得图案如图所示,这个图案与原图案的形状和大小完全相同,只是位置发生变化,并且是将原图案先向右平移3个单位长度,再向下平移2个单位长度所得.图形平移的方向与距离图形上点的平移的方向与距离点平移时 坐标变化规律图形上点的坐标变化课堂小结
综合平移的坐标表示湘教·八年级下册复习回顾思考:什么叫平移?平移后得到的新图形与原图形有什么关系? 把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移. 平移后图形只改变位置,形状、大小不变.探究新知 如图,△ABC的顶点坐标分别为A(-4,-1),B(-5,-3),C(-2,-4).将△ABC向右平移7 个单位,它的像是△A1B1C1;再向上平移5个单位,△A1B1C1的像是△A2B2C2.ABCA1B1C1A2B2C2(1)分别写出△A1B1C1,△A2B2C2的顶点坐标;ABCA1B1C1A2B2C2A1(3,-1)B1(2,-3)C1(5,-4)A2(3,4)B2(2,2)C2(5,1)ABCA1B1C1A2B2C2(2)将△ABC作沿射线AA2的方向的平移,移动的距离等于线段AA2的长度,则△ABC的像是△A2B2C2吗?解:在这个平移下, 点A(-4,-1)的像是点A2(3,4). 点A2的横坐标是3 =(-4)+ 7,点A2的纵坐标是4 =(-1)+ 5.ABCA1B1C1A2B2C2因此在这个平移下,平面内任一点P(x,y)与其像点P′(x′,y′) 的坐标有如下关系:按照这个关系,点B(-5,-3) 的像点的坐标为(2,2),从而点B的像点是B2;点C(-2,-4) 的像点的坐标为(5,1),从而点C的像点是C2. 因此△ABC的像是△A2B2C2,如图.总结归纳图形平移的方向与距离图形上点的平移的方向与距离点平移时 坐标变化规律图形上点的坐标变化 如图,四边形ABCD四个顶点坐标分别为A(1,2),B(3,1),C(5,2),D(3,4).将四边形ABCD先向下平移5个单位,再向左平移6个单位,它的像是四边形A′B′C′D′,写出四边形A′B′C′D′的顶点坐标,并作出该四边形.【教材P101页】解:四边形ABCD先向下平移5个单位,再向左平移6个单位,在这个平移下,平面内任一点P(x,y)与其像点P′(x′,y′)的坐标有如下关系:按照这个关系,由点A,B,C,D的坐标可知其像的坐标分别是A′(-5,-3),B′(-3,-4),C′(-1,-3),D′(-3,-1). 依次连接点A′,B′,C′,D′,即得四边形A′B′C′D′, 如图.练习 如图,菱形ABCD四个顶点的坐标分别为A(4,7),B(2,4), C(4,1),D(6,4). 将菱形ABCD向下平移3个单位,它的像是菱形A′B′C′D′. 写出菱形A′B′C′D′的顶点坐标,并作出该图形. 将菱形A′B′C′D′向左平移6个单位,它的像是菱形A″B″C″D″,写出菱形A″B″C″D″的顶点坐标,并作出该图形.【教材P101页】A′(4,4)B′(2,1)C′(4,-2)D′(6,1)A″(-2,4)B″(-4,1)C″(-2,-2)D″(0,1)随堂练习1.已知三角形的三个顶点坐标分别是(-1,4),(5,5),(2,9),现将这三个点先向左平移1个单位长度,再向下平移2个单位长度,则平移后三个顶点的坐标是( )A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)B2.三角形DEF是由三角形ABC平移得到的,点A(-1,-4)的对应点为D(1,-1),则点B(1,1)的对应点E、点C(-1,4)的对应点F的坐标分别为( )A.(2,2),(3,4) B.(3,4),(1,7)C.(-2,2),(1,7) D.(3,4),(2,-2)B3.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到Q(x,-1),则xy=______.-104.如图所示的四边形是将坐标(0,0),(1,2),(-1,3),(-2,1)的点用线段依次连接而成的,将这四个点的坐标作如下变化,横坐标分别加3,纵坐标分别减2,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么关系?解:变化后的坐标依次为(3,-2),(4,0),(2,1),(1,-1).将各点用线段依次连接起来,所得图案如图所示,这个图案与原图案的形状和大小完全相同,只是位置发生变化,并且是将原图案先向右平移3个单位长度,再向下平移2个单位长度所得.图形平移的方向与距离图形上点的平移的方向与距离点平移时 坐标变化规律图形上点的坐标变化课堂小结
相关资料
更多