- 【突破压轴冲刺名校】 压轴专题07 等式与不等式综合问题小题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用) 试卷 1 次下载
- 【突破压轴冲刺名校】 压轴专题09 计数原理与概率统计综合问题小题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用) 试卷 0 次下载
- 【突破压轴冲刺名校】 压轴专题08 立体几何综合问题小题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用) 试卷 0 次下载
- 【突破压轴冲刺名校】 压轴专题10 解析几何综合问题小题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用) 试卷 0 次下载
- 【突破压轴冲刺名校】 压轴专题12 导数综合问题大题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用) 试卷 0 次下载
【突破压轴冲刺名校】 压轴专题11 圆锥曲线综合问题大题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用)
展开1.(2023·江苏南通·校联考模拟预测)已知A,B是椭圆上关于坐标原点O对称的两点,点,连结DA并延长交C于点M,连结DB交C于点N.
(1)若A为线段DM的中点,求点A的坐标;
(2)设,的面积分别为,若,求线段OA的长.
2.(2023·江苏·二模)如图,过轴左侧的一点作两条直线分别与抛物线交于和四点,并且满足,.
(1)设的中点为,证明垂直于轴
(2)若是双曲线左支上的一点,求面积的最小值.
3.(2023·江苏·统考一模)已知双曲线:的离心率为,直线:与双曲线C仅有一个公共点.
(1)求双曲线的方程
(2)设双曲线的左顶点为,直线平行于,且交双曲线C于M,N两点,求证:的垂心在双曲线C上.
4.(2022秋·江苏南通·高三期中)已知过定点的直线交曲线于A,B两点.
(1)若直线的倾斜角为,求;
(2)若线段的中点为,求点的轨迹方程.
5.(2023春·江苏南京·高三南京师范大学附属中学江宁分校校联考阶段练习)在平面直角坐标系中,双曲线的离心率为.斜率为的直线经过点,点是直线与双曲线的交点,且.
(1)求双曲线的方程;
(2)若经过定点的直线与双曲线相交于、两点,经过点斜率为的直线与直线的交点为,求证:直线经过轴上的定点.
6.(2021秋·江苏南京·高三南京市中华中学校考阶段练习)已知C:的上顶点到右顶点的距离为,离心率为,过椭圆左焦点作不与x轴重合的直线与椭圆C相交于M、N两点,直线m的方程为:,过点M作垂直于直线m交直线m于点E.
(1)求椭圆C的标准方程:
(2)①若线段EN必过定点P,求定点P的坐标;
②点O为坐标原点,求面积的最大值.
7.(2022秋·江苏南通·高三统考阶段练习)抛物线:,双曲线:且离心率,过曲线下支上的一点作的切线,其斜率为.
(1)求的标准方程;
(2)直线与交于不同的两点,,以PQ为直径的圆过点,过点N作直线的垂线,垂足为H,则平面内是否存在定点D,使得DH为定值,若存在,求出定值和定点D的坐标;若不存在,请说明理由.
8.(2022秋·江苏南京·高三南京师大附中校联考阶段练习)已知双曲线的中心为坐标原点,焦点在坐标轴上,且点,,三个点中有且仅有两点在双曲线上.
(1)求双曲线的标准方程;
(2)直线交双曲线于轴右侧两个不同点的,连接分别交直线于点.若直线与直线的斜率互为相反数,证明:为定值.
9.(2022秋·江苏常州·高三统考阶段练习)已知椭圆的中心为坐标原点,焦点在轴上,椭圆上的点到准线的最短距离为2,且椭圆上的点到焦点的距离的最大值为3.设点分别为椭圆的右顶点和左焦点,过点的直线交椭圆于点,直线分别与直线交于点.
(1)求椭圆的方程;
(2)证明:直线和直线的斜率之积为定值;
(3)求与面积之和的最小值.
10.(2023秋·江苏扬州·高三扬州中学校考阶段练习)已知点是焦点为F的抛物线C:上一点.
(1)求抛物线C的方程;
(2)设点P是该抛物线上一动点,点M,N是该抛物线准线上两个不同的点,且的内切圆方程为,求面积的最小值.
11.(2022秋·江苏·高三校联考阶段练习)在直角坐标系中,已知抛物线的焦点为F,过点F的直线交抛物线C于A,B两点,且.
(1)求抛物线C的方程;
(2)直线分别交直线于两点,圆是以线段为直径的圆.从下面①②中选取一个作为条件,证明另外一个成立.
①直线l是抛物线C的准线;②直线与圆相切.
12.(2022秋·江苏徐州·高三期末)已知椭圆:的离心率为,直线过C的焦点且垂直于x轴,直线被C所截得的线段长为.
(1)求C的方程;
(2)若C与y轴的正半轴相交于点P,点A在x轴的负半轴上,点B在C上,,,求的面积.
13.(2023秋·江苏苏州·高三常熟中学校考期末)椭圆C:()的左右焦点分别为,,上顶点为A,且,.
(1)求C的方程;
(2)若椭圆E:(且),则称E为C的倍相似椭圆,如图,已知E是C的3倍相似椭圆,直线l:与两椭圆C,E交于4点(依次为M,N,P,Q,如图).且,证明:点T(k,m)在定曲线上.
14.(2023春·江苏镇江·高三校考开学考试)已知椭圆的左、右焦点分别为,,上顶点为A,钝角三角形的面积为,斜率为的直线交椭圆C于P,Q两点.当直线经过,A两点时,点到直线的距离为.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,当直线的纵截距不为零时,试问是否存在实数k,使得
为定值?若存在,求出此时面积的最大值;若不存在,请说明理由.
15.(2023·江苏南通·二模)已知椭圆的离心率为,焦距为,过的左焦点的直线与相交于、两点,与直线相交于点.
(1)若,求证:;
(2)过点作直线的垂线与相交于、两点,与直线相交于点.求的最大值.
16.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)已知分别为双曲线的左、右顶点,为双曲线的右焦点,点为双曲线左支上异于点的另一点,当点坐标为时,.
(1)求双曲线的方程;
(2)若点,直线交双曲线的右支于点,判断直线与直线的交点是否在一条定直线?若是,请求出该直线方程;若不是,请说明理由.
17.(2023秋·江苏南通·高三统考期末)已知双曲线C过点,且C的渐近线方程为.
(1)求C的方程;
(2)设A为C的右顶点,过点的直线与圆O:交于点M,N,直线AM,AN与C的另一交点分别为D,E,求证:直线DE过定点.
18.(2023秋·江苏泰州·高三统考期末)在平面直角坐标系中,过点的直线与曲线:的左支交于,两点,直线与双曲线的右支交于点.已知双曲线的离心率为,当直线与轴垂直时,.
(1)求双曲线的标准方程;
(2)证明:直线与圆:相切.
19.(2023秋·江苏·高三统考期末)已知椭圆的左、右焦点分别为,过点作直线(与轴不重合)交于两点,且当为的上顶点时,的周长为8,面积为
(1)求的方程;
(2)若是的右顶点,设直线的斜率分别为,求证:为定值.
20.(2023秋·江苏南通·高三统考期末)在平面直角坐标系xOy中,已知圆E:和定点,P为圆E上的动点,线段PF的垂直平分线与直线PE交于点Q,设动点Q的轨迹为曲线C.
(1)求曲线C的方程;
(2)设曲线C与x轴正半轴交于点A,过点的直线l与曲线C交于点M,N(异于点A),直线MA,NA与直线分别交于点G,H.若点F,A,G,H四点共圆,求实数t的值.
21.(2023秋·江苏南通·高三统考期末)已知抛物线经过点.
(1)求抛物线的方程;
(2)动直线与抛物线交于不同的两点,,是抛物线上异于,的一点,记,的斜率分别为,,为非零的常数.
从下面①②③中选取两个作为条件,证明另外一个成立:
①点坐标为;②;③直线经过点.
22.(2022秋·江苏南京·高三校考期末)已知圆和定点P是圆上任意一点,线段的垂直平分线交于点M,设动点M的轨迹为曲线E.
(1)求曲线E的方程;
(2)设,过的直线l交曲线E于M,N两点(点M在x轴上方),设直线AM与BN的斜率分别为,求证:为定值.
23.(2023秋·江苏苏州·高三统考期末)在平面直角坐标系中,已知抛物线:的焦点与椭圆:的右焦点关于直线对称.
(1)求的标准方程;
(2)若直线与相切,且与相交于A,B两点,求面积的最大值.
(注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点)
24.(2023·江苏南京·南京师大附中校考一模)已知,为双曲线C的焦点,点在C上.
(1)求C的方程;
(2)点A,B在C上,直线PA,PB与y轴分别相交于M,N两点,点Q在直线AB上,若+,=0,是否存在定点T,使得|QT|为定值?若有,请求出该定点及定值;若没有,请说明理由.
25.(2023春·江苏南通·高三校考开学考试)已知双曲线C:(a>0,b>0)的左、右顶点为,P(4,1)是C上一点,且直线PA1与PA2的斜率乘积为.
(1)求C的方程.
(2)设直线l与C交于点M,N,且PM⊥PN.证明:直线l过定点.
26.(2023秋·江苏南京·高三南京市第一中学校考期末)已知O为坐标原点,抛物线E:的焦点F到准线l的距离为2.
(1)求p;
(2)若A,B,C为E上不同的三点,且,直线AB,FC分别与l交于点M,N,求.
27.(2023春·江苏宿迁·高三江苏省泗阳中学校考阶段练习)在平面直角坐标系中,已知双曲线的离心率为,直线与双曲线C交于两点,点在双曲线C上.
(1)求线段中点的坐标;
(2)若,过点D作斜率为的直线与直线交于点P,与直线交于点Q,若点满足,求的值.
28.(2022秋·江苏南京·高三江苏省江浦高级中学校联考阶段练习)已知点与,动点满足直线,的斜率之积为,则点的轨迹为曲线.
(1)求曲线的方程;
(2)若点在直线上,直线,分别与曲线交于点,,求与面积之比的最大值.
29.(2023秋·江苏扬州·高三校考期末)已知过点的椭圆:上的点到焦点的最大距离为3.
(1)求椭圆的方程;
(2)已知过椭圆:上一点的切线方程为.已知点M为直线上任意一点,过M点作椭圆的两条切线 ,为切点,与(O为原点)交于点D,当最小时求四边形的面积.
30.(2023秋·江苏扬州·高三校联考期末)设椭圆的左焦点为,右顶点为.
(1)求椭圆E的方程;
(2)过点作两条斜率分别为,的动直线,分别交椭圆于点A、B、C、D,点M、N分别为线段、中点,若,试判断直线是否经过定点,并说明理由.
【突破压轴冲刺名校】 压轴专题12 导数综合问题大题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用): 这是一份【突破压轴冲刺名校】 压轴专题12 导数综合问题大题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用),文件包含突破压轴冲刺名校压轴专题12导数综合问题大题综合2023届新高考数学复习尖子生30题难题突破江苏专用原卷版docx、突破压轴冲刺名校压轴专题12导数综合问题大题综合2023届新高考数学复习尖子生30题难题突破江苏专用解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
【突破压轴冲刺名校】 压轴专题07 等式与不等式综合问题小题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用): 这是一份【突破压轴冲刺名校】 压轴专题07 等式与不等式综合问题小题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用),文件包含突破压轴冲刺名校压轴专题07等式与不等式综合问题小题综合2023届新高考数学复习尖子生30题难题突破江苏专用原卷版docx、突破压轴冲刺名校压轴专题07等式与不等式综合问题小题综合2023届新高考数学复习尖子生30题难题突破江苏专用解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
【突破压轴冲刺名校】 压轴专题06 数列综合问题小题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用): 这是一份【突破压轴冲刺名校】 压轴专题06 数列综合问题小题综合 2023届新高考数学复习尖子生30题难题突破(江苏专用),文件包含突破压轴冲刺名校压轴专题06数列综合问题小题综合2023届新高考数学复习尖子生30题难题突破江苏专用原卷版docx、突破压轴冲刺名校压轴专题06数列综合问题小题综合2023届新高考数学复习尖子生30题难题突破江苏专用解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。