1号卷2022年高考最新原创信息试卷(一)理数
展开这是一份1号卷2022年高考最新原创信息试卷(一)理数,共4页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.已知全集,集合,,则( )
A.B.C.D.
2.若复数,则在复平面内,对应的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
3.函数的图象大致为( )
A.B.
C. D.
4.若,则( )
A.B.C.D.
5.若抛物线上的一点到焦点的距离为1,则点的纵坐标是( )
A.B.C.D.
6.根据有关资料,围棋状态空间复杂度的上限约为,而可观测宇宙中某类物质的原子总数约为.则下列各数中与最接近的是( )(参考数据:)
A.B.C.D.
7.已知函数,则下列结论错误的是( )
A.的最小正周期为
B.的图象关于点成中心对称
C.的图象关于直线对称
D.的单调递增区间是
8.设,分别是正方体的棱上的两点,且,,则当在上沿的方向运动时,三棱锥的体积( )
A.不断变大B.不断变小C.保持不变D.先减小再增大
9.对于任意实数,,定义.已知函数,,,若恒成立,则的最小值为( )
A.B.0C.D.1
10.如图,在中,为的中点,,与交于点,若,,则( )
A.B.C.D.
11.已知圆的方程为,过第一象限内的点作圆的两条切线,,切点分别为,若,则的最大值为( )
A.B.3C.D.6
12.当时,恒成立,则整数的最大值为( )
A.3B.2C.1D.0
二、填空题
13.若实数,满足,则的最大值是 .
14.已知向量,,若,,与垂直,则与的夹角的余弦值为 .
15.已知为奇函数,当时,,则曲线在点处的切线方程是 .
16.已知A为双曲线的右顶点,为双曲线右支上一点,点关于原点的对称点为,记直线,的倾斜角分别为,,且,则双曲线的离心率为 .
三、解答题
17.设正项等比数列的前项和为,数列的前项和为,,,对都有成立.
(1)求数列,的通项公式;
(2)求数列的前项和.
18.如图1,在边长为的等边中,是边上的高,,分别是和边的中点,现将沿翻折使得平面平面,如图2.
(1)求证:平面;
(2)求二面角的余弦值.
19.很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.
(1)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4人,求至多1人不合格的概率;
(2)若从这12名新手中任选3人,用表示成绩合格的人数,求的分布列与数学期望.
20.已知椭圆:的左、右焦点分别为,,为椭圆上一动点(异于左、右顶点),若的周长为6,且面积的最大值为.
(1)求椭圆的标准方程;
(2)过点作不与轴重合的直线与椭圆相交于,两点,直线的方程为:,过点作垂直于直线于点,求证:直线必过轴一定点.
21.已知函数.
(1)讨论函数的单调性;
(2)若函数,且在上恒成立,求实数的取值范围.
22.已知平面直角坐标系中,曲线:经过伸缩变换得到曲线,直线过点,斜率为,且与曲线交于两点.
(1)求曲线的普通方程和直线的参数方程;
(2)求的值.
23.已知函数.
(1)求的解集;
(2)记的最大值为,,且,求证:.
相关试卷
这是一份高考理数专家押题卷(一)-【高考一线】2022年衡水名师原创高考专家押题卷理科数学,文件包含押题卷2套理数答案pdf、押题卷一答题卡理数pdf、高考理数专家押题卷一pdf等3份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份3套全国高考理数原创冲刺卷(pdf版,含解析),共23页。
这是一份2021年最新高考冲刺压轴卷 理数,共21页。试卷主要包含了本试卷分第Ⅰ卷两部分等内容,欢迎下载使用。