江苏省扬州市高邮市第一中学2022届高三下学期二模适应性考试数学试卷
展开
这是一份江苏省扬州市高邮市第一中学2022届高三下学期二模适应性考试数学试卷,共5页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.设集合,,则( )
A.B.
C.D.
2.已知复数z满足,则z=( )
A.B.C.D.
3.已知向量,,则“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.某校有5名大学生打算前往观看冰球,速滑,花滑三场比赛,每场比赛至少有1名学生且至多2名学生前往,则甲同学不去观看冰球比赛的方案种数有( )
A.48B.54C.60D.72
5.二项式展开式中,有理项共有( )项.
A.3B.4C.5D.7
6.已知函数相邻两个对称轴之间的距离为2π,若f(x)在(-m,m)上是增函数,则m的取值范围是( )
A.(0,]B.(0,]C.(0,]D.(0,]
7.2022年北京冬奥会的成功举办使北京成为奥运史上第一座“双奥之城”.其中2008年北京奥运会的标志性场馆之一“水立方”摇身一变成为了“冰立方”.“冰立方”在冬奥会期间承接了冰壶和轮椅冰壶等比赛项目.“水立方”的设计灵感来自威尔·弗兰泡沫,威尔·弗兰泡沫是对开尔文胞体的改进,开尔文胞体是一种多面体,它由正六边形和正方形围成(其中每一个顶点处有一个正方形和两个正六边形),已知该多面体共有24个顶点,且棱长为2,则该多面体的表面积是( )
A.B.C.D.
8.在给出的①;②;③.三个不等式中,正确的个数为( )
A.0个B.1个C.2个D.3个
二、多选题
9.给出下列命题,其中正确的命题是( )
A.设具有相关关系的两个变量的样本相关系数为,则越接近于,之间的线性相关程度越强
B.随机变量,若,则
C.随机变量服从两点分布,若,则
D.某人在次射击中击中目标的次数为,若,则当时概率最大
10.设是各项均为正数的数列,以,为直角边长的直角三角形面积记为,则为等比数列的充分条件是( )
A.是等比数列
B.或是等比数列
C.和均是等比数列
D.和均是等比数列,且公比相同
11.已知直线y=kx(k≠0)与双曲线交于A,B两点,以AB为直径的圆恰好经过双曲线的右焦点F,若三角形ABF的面积为,则以下正确的结论有( )
A.双曲线的离心率为2B.双曲线的离心率为
C.双曲线的渐近线方程为y=±2xD.
12.如图,直四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱长为3,E,F分别是AB,BC的中点,过点 D1,E,F的平面记为α,则( )
A.平面α截直四棱柱ABCD-A1B1C1D1所得截面的形状为四边形
B.平面α截直四棱柱ABCD-A1B1C1D1所得截面的面积为
C.平面α将直四棱柱分割成的上、下两部分的体积之比为47∶25
D.点B到平面α的距离与点A1到平面α的距离之比为1∶3
三、填空题
13.与点和直线的距离相等的点的轨迹方程是 .
14.已知函数为奇函数,则函数在区间上的最大值为 .
15.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则 .
16.已知直三棱柱的侧棱长为,底面为等边三角形.若球O与该三棱柱的各条棱都相切,则球O的体积为 .
四、解答题
17.记的内角A,B,C的对边分别为a,b,c,已知.
(1)证明:;
(2)当时,求的面积S.
18.已知四棱锥P—ABCD中,△ABD、△BCD、△BDP都是正三角形
(1)求证:平面ACP⊥平面BDP;
(2)求直线BP与平面ADP所成角的正弦值.
19.已知数列的前n项和为,若,.
(1)求证:数列是等差数列;
(2)从下面两个条件中选一个,求数列的前n项的和.
①;
②.
20.在统计调查中,问卷的设计是一门很大的学问,特别是对一些敏感性问题.例如学生在考试中有无作弊现象,社会上的偷税漏税等,更要精心设计问卷,设法消除被调查者的顾虑,使他们能够如实回答问题,否则被调查者往往会拒绝回答,或不提供真实情况.某调查中心为了调查中学生在考试中有无作弊现象,随机选取150名男学生和150名女学生进行问卷调查.问卷调查中设置了两个问题:①你是否为男生?②你是否在考试中有作弊现象.调查分两个环节,第一个环节:确定回答的问题,让被调查者从装有3个红球,3个黑球(除颜色外完全相同)的袋子中随机摸取两个球,摸到同色两球的学生如实回答第一个问题,摸到异色两球的学生如实回答第二个问题.第二个环节:填写问卷(问卷中不含问题,只有“是”与“否”).已知统计问卷中有70张答案为“是”.
(1)根据以上的调查结果,利用你所学的知识,估计中学生在考试中有作弊现象的概率;
(2)据核实,以上的300名学生中有20名学生在考试中有作弊现象,其中男生15人,女生5人,试判断是否有97.5%的把握认为中学生在考试中有无作弊现象与性别有关.
参考公式和数据如下:,.
21.已知椭圆C:的右顶点恰好为圆A:的圆心,且圆A上的点到直线:的距离的最大值为.
(1)求C的方程;
(2)过点(3,0)的直线与C相交于P,Q两点,点M在C上,且,弦PQ的长度不超过,求实数λ的取值范围.
22.已知函数.
(1)求函数的单调区间
(2)若,证明:存在两个零点,且.
0.15
0.10
0.05
0.025
0.005
2.072
2.706
3.841
5.024
7.879
相关试卷
这是一份江苏省扬州市高邮市2023-2024学年高三上学期期初考试数学试卷(含答案),共19页。试卷主要包含了单选题,多选题,填空题等内容,欢迎下载使用。
这是一份2020-2021学年江苏省扬州市高邮市高二(上)期中数学试卷,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021-2022学年江苏省扬州市高邮市高一(下)期中数学试卷,共19页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。