资料中包含下列文件,点击文件名可预览资料内容
还剩6页未读,
继续阅读
成套系列资料,整套一键下载
- 专题7.13多边形的内角与外角大题提升训练(重难点培优30题)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】 试卷 1 次下载
- 第7章平面图形的认识(二)单元测试(基础过关卷,七下苏科)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】 试卷 1 次下载
- 第7章平面图形的认识单元测试(培优压轴卷,七下苏科)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】 试卷 1 次下载
- 专题8.1同底数幂的乘法专项提升训练-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】 试卷 2 次下载
- 专题8.2幂的乘方与积的乘方专项提升训练-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】 试卷 1 次下载
第7章平面图形的认识(二)单元测试(能力提升卷,七下苏科)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】
展开
这是一份第7章平面图形的认识(二)单元测试(能力提升卷,七下苏科)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】,文件包含第7章平面图形的认识二单元测试能力提升卷七下苏科-拔尖特训2022-2023学年七年级数学下册尖子生培优必刷题原卷版苏科版docx、第7章平面图形的认识二单元测试能力提升卷七下苏科-拔尖特训2022-2023学年七年级数学下册尖子生培优必刷题解析版苏科版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】第1章平面图形的认识(二)单元测试(能力提升卷,七下苏科)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共24题,其中选择8道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022秋•山西期末)若一个三角形的两边长分别为7和9,则此三角形第三边的长可能为( )A.1 B.7 C.16 D.172.(2022秋•城关区校级期末)若n边形的内角和比它的外角和的3倍少180°,则n是( )A.5 B.7 C.8 D.93.(2022秋•临汾期末)如图,两条平行线a,b被第三条直线c所截.若∠2=56°,则∠1的度数为( )A.120° B.112° C.124° D.56°4.(2022秋•硚口区期末)如图,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=70°,∠ACD=20°,∠ABE=25°,则∠BFC的大小是( )A.90° B.95° C.105° D.115°5.(2022秋•重庆期末)如图,△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=33°,∠ECD=85°,则∠D=( )A.52° B.43° C.33° D.38°6.(2022秋•蒲城县期末)如图,∠1=60°,下列推理正确的是( )①若∠2=60°,则AB∥CD;②若∠5=60°,则AB∥CD;③若∠3=120°,则AB∥CD;④若∠4=120°,则AB∥CD.A.①② B.②④ C.②③④ D.②③7.(2022秋•大渡口区校级期末)如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=( )A.70° B.75° C.80° D.85°8.(2022春•牡丹江期中)如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个二、填空题(本大题共8小题,每小题2分,共16分)请把答案直接填写在横线上9.(2022秋•凤凰县期末)如图,自行车的主框架采用了三角形结构,这样设计的依据是三角形具有 .10.(2022秋•市北区校级期末)如图,将直角三角形的直角顶点放在直尺的一边上,若∠1=55°,∠2=60°,则∠3= °.11.(2023•惠阳区校级开学)已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=36cm2,则△DEC的面积为 .12.(2022秋•广饶县校级期末)如图所示的是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移得到△DEF.若AB=10cm,BE=6cm,DH=4cm,则图中阴影部分面积为 .13.(2022秋•朝阳区校级期末)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC= 度.14.(2022秋•天山区校级期末)如图,BE、CE分别为△ABC的内、外角平分线,BF、CF分别为△EBC的内、外角平分线,若∠A=44°,则∠BFC= 度.15.(2022秋•沙坪坝区校级期末)如图,直线GH分别与直线AB,CD相交于点G,H,且AB∥CD.点M在直线AB,CD之间,连接GM,HM,射线GH是∠AGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠BGM,∠M=∠N+∠HGN,则∠MHG的度数为 .16.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图∠MON=40°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°<∠OAC<60° ).当△ABC为“灵动三角形”时,∠OAC的度数为 .三、解答题(本大题共8小题,共68分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•朝阳区校级期末)阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FG∥CD,∠1=∠3.求证:∠B+∠BDE=180°.证明:因为FG∥CD(已知),所以∠1= .又因为∠1=∠3(已知),所以∠2= (等量代换).所以BC∥ ( ),所以∠B+∠BDE=180°( ).18.(2022秋•天山区校级期末)如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠ABD的度数.19.(2022秋•朝阳区校级期末)如图,淇淇从点A出发,前进10米后向右转20°,再前进10米后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)求淇淇一共走了多少米?(2)求这个多边形的内角和.20.(2022秋•驿城区校级期末)如图,在△ABC中,CF⊥AB于F,ED∥CF,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AGF=70°,求∠B及∠2的度数.21.(2022秋•江北区校级期末)在正方形网格中,小正方形的顶点称为“格点”,每个小正方形的边长均为1,△ABC的三个顶点均在“格点”处.(1)在给定方格纸中,点B与点B'对应,请画出平移后的△A'B'C';(2)线段AA'与线段CC'的关系是 ;(3)求平移过程中,线段BC扫过的面积.22.(2021秋•抚州期末)如图,已知直线AB∥CD,∠A=∠C=100°,点E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中是否存在∠BEC=∠ADB?若存在,求出∠BEC的度数;若不存在,请说明理由.23.(2022•南谯区校级开学)如图,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角尺COD绕点O按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第几秒时,MN恰好与CD平行;第几秒时,MN恰好与直线CD垂直.24.(2022春•顺德区校级期中)如图1,已知直线PQ∥MN,点A在直线PQ上,点C,D在直线MN上,连接AC,AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数.(2)若将图1中的线段AD沿MN向右平移到A1D1,如图2所示位置,此时AE平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移,若点A1的位置如图3,点D此时还在点C的右边,其他条件与(2)相同,请你在备用图图3上画出草图分析,并直接写出此时∠A1EC的度数.
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】第1章平面图形的认识(二)单元测试(能力提升卷,七下苏科)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共24题,其中选择8道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022秋•山西期末)若一个三角形的两边长分别为7和9,则此三角形第三边的长可能为( )A.1 B.7 C.16 D.172.(2022秋•城关区校级期末)若n边形的内角和比它的外角和的3倍少180°,则n是( )A.5 B.7 C.8 D.93.(2022秋•临汾期末)如图,两条平行线a,b被第三条直线c所截.若∠2=56°,则∠1的度数为( )A.120° B.112° C.124° D.56°4.(2022秋•硚口区期末)如图,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=70°,∠ACD=20°,∠ABE=25°,则∠BFC的大小是( )A.90° B.95° C.105° D.115°5.(2022秋•重庆期末)如图,△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=33°,∠ECD=85°,则∠D=( )A.52° B.43° C.33° D.38°6.(2022秋•蒲城县期末)如图,∠1=60°,下列推理正确的是( )①若∠2=60°,则AB∥CD;②若∠5=60°,则AB∥CD;③若∠3=120°,则AB∥CD;④若∠4=120°,则AB∥CD.A.①② B.②④ C.②③④ D.②③7.(2022秋•大渡口区校级期末)如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=( )A.70° B.75° C.80° D.85°8.(2022春•牡丹江期中)如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个二、填空题(本大题共8小题,每小题2分,共16分)请把答案直接填写在横线上9.(2022秋•凤凰县期末)如图,自行车的主框架采用了三角形结构,这样设计的依据是三角形具有 .10.(2022秋•市北区校级期末)如图,将直角三角形的直角顶点放在直尺的一边上,若∠1=55°,∠2=60°,则∠3= °.11.(2023•惠阳区校级开学)已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=36cm2,则△DEC的面积为 .12.(2022秋•广饶县校级期末)如图所示的是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移得到△DEF.若AB=10cm,BE=6cm,DH=4cm,则图中阴影部分面积为 .13.(2022秋•朝阳区校级期末)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC= 度.14.(2022秋•天山区校级期末)如图,BE、CE分别为△ABC的内、外角平分线,BF、CF分别为△EBC的内、外角平分线,若∠A=44°,则∠BFC= 度.15.(2022秋•沙坪坝区校级期末)如图,直线GH分别与直线AB,CD相交于点G,H,且AB∥CD.点M在直线AB,CD之间,连接GM,HM,射线GH是∠AGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠BGM,∠M=∠N+∠HGN,则∠MHG的度数为 .16.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图∠MON=40°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°<∠OAC<60° ).当△ABC为“灵动三角形”时,∠OAC的度数为 .三、解答题(本大题共8小题,共68分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•朝阳区校级期末)阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FG∥CD,∠1=∠3.求证:∠B+∠BDE=180°.证明:因为FG∥CD(已知),所以∠1= .又因为∠1=∠3(已知),所以∠2= (等量代换).所以BC∥ ( ),所以∠B+∠BDE=180°( ).18.(2022秋•天山区校级期末)如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠ABD的度数.19.(2022秋•朝阳区校级期末)如图,淇淇从点A出发,前进10米后向右转20°,再前进10米后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)求淇淇一共走了多少米?(2)求这个多边形的内角和.20.(2022秋•驿城区校级期末)如图,在△ABC中,CF⊥AB于F,ED∥CF,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AGF=70°,求∠B及∠2的度数.21.(2022秋•江北区校级期末)在正方形网格中,小正方形的顶点称为“格点”,每个小正方形的边长均为1,△ABC的三个顶点均在“格点”处.(1)在给定方格纸中,点B与点B'对应,请画出平移后的△A'B'C';(2)线段AA'与线段CC'的关系是 ;(3)求平移过程中,线段BC扫过的面积.22.(2021秋•抚州期末)如图,已知直线AB∥CD,∠A=∠C=100°,点E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中是否存在∠BEC=∠ADB?若存在,求出∠BEC的度数;若不存在,请说明理由.23.(2022•南谯区校级开学)如图,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角尺COD绕点O按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第几秒时,MN恰好与CD平行;第几秒时,MN恰好与直线CD垂直.24.(2022春•顺德区校级期中)如图1,已知直线PQ∥MN,点A在直线PQ上,点C,D在直线MN上,连接AC,AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数.(2)若将图1中的线段AD沿MN向右平移到A1D1,如图2所示位置,此时AE平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移,若点A1的位置如图3,点D此时还在点C的右边,其他条件与(2)相同,请你在备用图图3上画出草图分析,并直接写出此时∠A1EC的度数.
相关资料
更多