终身会员
搜索
    上传资料 赚现金

    最新高考数学一轮复习【讲通练透】 第03讲 等式与不等式的性质(五大题型)(讲通)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版).docx
    • 解析
      第03讲 等式与不等式的性质(五大题型)(讲义)(解析版).docx
    第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版)第1页
    第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版)第2页
    第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版)第3页
    第03讲 等式与不等式的性质(五大题型)(讲义)(解析版)第1页
    第03讲 等式与不等式的性质(五大题型)(讲义)(解析版)第2页
    第03讲 等式与不等式的性质(五大题型)(讲义)(解析版)第3页
    还剩5页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新高考数学一轮复习【讲通练透】 第03讲 等式与不等式的性质(五大题型)(讲通)

    展开

    这是一份最新高考数学一轮复习【讲通练透】 第03讲 等式与不等式的性质(五大题型)(讲通),文件包含第03讲等式与不等式的性质五大题型讲义原卷版docx、第03讲等式与不等式的性质五大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。


    2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
    3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
    4、重视错题。错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    第03讲 等式与不等式的性质
    目录
    1、比较大小基本方法
    2、不等式的性质
    (1)基本性质
    【解题方法总结】
    1、应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.
    2、比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.
    比较法又分为作差比较法和作商比较法.
    作差法比较大小的步骤是:
    (1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.
    作商比较大小(一般用来比较两个正数的大小)的步骤是:
    (1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.
    其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.
    作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.
    题型一:不等式性质的应用
    【解题方法总结】
    1、判断不等式是否恒成立,需要给出推理或者反例说明.
    2、充分利用基本初等函数性质进行判断.
    3、小题可以用特殊值法做快速判断.
    例1.(多选题)(2023·重庆·统考模拟预测)已知,,则下列关系式一定成立的是( )
    A.B.
    C.D.
    【答案】BD
    【解析】因为,所以或,
    当时,,A不成立,,,
    由,故,当且仅当,即时,等号成立,
    因为,故等号不成立,故;
    当时,,,
    不妨设,则,故此时C不成立,
    由,故,当且仅当,即时,等号成立,
    因为,故等号不成立,故;
    综上:BD一定成立.
    故选:BD
    例2.(多选题)(2023·山东·校联考二模)已知实数满足,且,则下列说法正确的是( )
    A.B.C.D.
    【答案】BC
    【解析】对于A,,,,A错误;
    对于B,,,,,,,
    ,即,B正确;
    对于C,,,,即,C正确;
    对于D,,D错误.
    故选:BC.
    例3.(多选题)(2023·全国·校联考模拟预测)若,则下列结论正确的是( )
    A.B.
    C.D.
    【答案】ACD
    【解析】∵,则,,∴,即,A正确;
    例如,,,,, 显然,B错误;
    由得,,∴,即,C正确;
    易知,,,

    ∴,D正确;
    故选:ACD.
    题型二:比较数(式)的大小与比较法证明不等式
    【解题方法总结】
    比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.
    比较法又分为作差比较法和作商比较法.
    作差法比较大小的步骤是:
    (1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.
    作商比较大小(一般用来比较两个正数的大小)的步骤是:
    (1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.
    其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.
    作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:
    若,则;;;
    若,则;;.
    例4.(2023·全国·高三专题练习)若,则将从小到大排列为______.
    【答案】
    【解析】,不妨令,
    则有,
    有,
    即.
    故答案为:.
    例5.(2023·全国·高三专题练习)如果a>b,给出下列不等式:
    ①;②a3>b3;③;④2ac2>2bc2;⑤>1;⑥a2+b2+1>ab+a+b.
    其中一定成立的不等式的序号是________.
    【答案】②⑥
    【解析】令,,排除①,,排除③选项,,排除⑤.当时,排除④.由于幂函数为上的递增函数,故,②是一定成立的.由于,故.故⑥正确.所以一定成立的是②⑥.
    例6.(2023·高三课时练习)(1)已知a>b>0,c<d<0,求证:;
    (2)设x,,比较与的大小.
    【解析】(1)由a>b>0,c<d<0,得-c>-d>0,a-c>b-d>0,从而得.
    又a>b>0,所以.
    (2)因为,当且仅当x=y时等号成立,
    所以当x=y时,;
    当时,.
    例7.(2023·全国·高三专题练习)(1)试比较与的大小;
    (2)已知,,求证:.
    【解析】(1)由题意,

    所以.
    (2)证明:因为,所以,即,
    而,所以,则.得证.
    题型三:已知不等式的关系,求目标式的取值范围
    【解题方法总结】
    在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.
    例8.(多选题)(2023·全国·高三专题练习)已知实数x,y满足则( )
    A.的取值范围为B.的取值范围为
    C.的取值范围为D.的取值范围为
    【答案】ABD
    【解析】因为,所以.因为,所以,则,故A正确;
    因为,所以.因为,所以,所以,所以,故B正确;
    因为,所以,则,故C错误;
    因为,所以,则,故D正确.
    故选:ABD.
    例9.(2023·广东·高三校联考期末)已知,,则的取值范围为( )
    A.B.C.D.
    【答案】D
    【解析】设,所以,
    则,又,
    所以,,由不等式的性质得:,
    则的取值范围为.
    故选:D.
    例10.(2023·全国·高三专题练习)已知,,则的取值范围是( )
    A.B.
    C.D.
    【答案】A
    【解析】因为,所以,
    由,得.
    故选:A.
    例11.(2023·全国·高三专题练习)已知三个实数a、b、c,当时,且,则的取值范围是____________.
    【答案】
    【解析】当时满足:且,
    ,即,进而,解得.
    所以或,

    令,

    由于
    所以在单调递增,在单调递减,
    当时,,当时,,
    所以
    故答案为:.
    题型四:不等式的综合问题
    【解题方法总结】
    综合利用等式与不等式的性质
    例12.(多选题)(2023·河北衡水·高三河北衡水中学校考阶段练习)已知,,且满足,.则的取值可以为( )
    A.10B.11C.12D.20
    【答案】CD
    【解析】因为,,
    所以, ,
    故,
    当,且,而时,即等号不能同时成立,
    所以,故AB错误,CD正确.
    故选:CD.
    例13.(多选题)(2023·全国·高三专题练习)已知,则( )
    A.B.
    C.D.
    【答案】ABD
    【解析】由得,,由于,所以,
    所以,因此且,故A正确,
    ,当时,,由于,当且仅当时,等号成立,故,当时,,所以,故B正确,
    ,当且仅当时取等号,故,所以C错误,
    ,当且仅当取等号,又,所以或者等号成立,
    故选:ABD
    例14.(多选题)(2023·全国·模拟预测)已知实数a,b满足,则( )
    A.B.
    C.D.的最小值为1
    【答案】BC
    【解析】由可知,,由不等式的性质可知,则.
    选项A:因为对数函数为减函数,,所以,故A错误;
    选项B:由函数的单调性可知,故B正确;
    选项C:因为,所以,故C正确;
    选项D:,
    当且仅当,即时取得等号,显然等号不成立,故D错误.
    故选:BC.
    例15.(2023·全国·高三专题练习)已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,则a的最大值是__.
    【答案】
    【解析】∵a+b+c=0,a2+b2+c2=1,
    ∴b+c=﹣a,b2+c2=1﹣a2,

    ∴b、c是方程:x2+ax+a20的两个实数根,




    即a的最大值为
    故答案为:.
    题型五:糖水不等式
    【解题方法总结】
    糖水不等式:若,,则一定有,或者.
    例16.(多选题)(2023·全国·高三专题练习)已知糖水中含有糖(),若再添加糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大),根据这个事实,下列不等式中一定成立的有( )
    A.B.
    C.D.
    【答案】ABD
    【解析】对于A,由题意可知,正确;
    对于B,因为,所以,正确;
    对于C,即,错误;
    对于D,,正确.
    故选:ABD
    例17.(2023·山西·统考一模)我们都知道一杯糖水中再加入一些糖,糖水会更甜.这句话用数学符号可表示为:,其中,且a,b,.据此可以判断两个分数的大小关系,比如_________(填“>”“<”).
    【答案】>
    【解析】令,则,
    令,则,
    所以,,
    根据题设知:.
    故答案为:>
    例18.(2023·福建·高三校联考阶段练习)若克不饱和糖水中含有克糖,则糖的质量分数为,这个质量分数决定了糖水的甜度.如果在此糖水中再添加克糖,生活经验告诉我们糖水会变甜,从而可抽象出不等式(,)数学中常称其为糖水不等式.依据糖水不等式可得出___________(用“”或“”填空);并写出上述结论所对应的一个糖水不等式___________.
    【答案】;
    【解析】空1:因为,所以可得:

    空2:由空1可得:,即.
    故答案为:;
    1.(多选题)(2022·全国·统考高考真题)若x,y满足,则( )
    A.B.
    C.D.
    【答案】BC
    【解析】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;
    由可变形为,解得,当且仅当时取等号,所以C正确;
    因为变形可得,设,所以,因此
    ,所以当时满足等式,但是不成立,所以D错误.
    故选:BC.
    2.(2019·全国·高考真题)若a>b,则( )
    A.ln(a−b)>0B.3a<3b
    C.a3−b3>0D.│a│>│b│
    【答案】C
    【解析】取,满足,,知A错,排除A;因为,知B错,排除B;取,满足,,知D错,排除D,因为幂函数是增函数,,所以,故选C.
    3.(2017·山东·高考真题)若a>b>0,且ab=1,则下列不等式成立的是( )
    A. B.
    C. D.
    【答案】B
    【解析】因为,且,所以
    设,则,所以单调递增,
    所以 ,所以选B.
    考点要求
    考题统计
    考情分析
    1.掌握等式性质.
    2.会比较两个数的大小.
    3.理解不等式的性质,并能简单应用.
    2022年II卷第12题,5分
    高考对不等式的性质的考查比较稳定,考查内容、频率、题型难度均变化不大,单独考查的题目虽然不多,但不等式的性质几乎可以渗透到高考的每一个考点,是进行不等式变形、证明以及解不等式的依据,所以它不仅是数学中的不 可或缺的工具,也是高考考查的一个重点内容.
    关系
    方法
    做差法
    与0比较
    做商法
    与1比较


    性质
    性质内容
    对称性
    传递性
    可加性
    可乘性
    同向
    可加性
    同向同正
    可乘性
    可乘方性

    相关试卷

    最新高考数学一轮复习【讲通练透】 第03讲 复数(练透):

    这是一份最新高考数学一轮复习【讲通练透】 第03讲 复数(练透),文件包含第03讲复数练习原卷版docx、第03讲复数练习解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    最新高考数学一轮复习【讲通练透】 第03讲 等比数列及其前n项和(九大题型)(讲通):

    这是一份最新高考数学一轮复习【讲通练透】 第03讲 等比数列及其前n项和(九大题型)(讲通),文件包含第03讲等比数列及其前n项和九大题型讲义原卷版docx、第03讲等比数列及其前n项和九大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。

    最新高考数学一轮复习【讲通练透】 第02讲 成对数据的统计分析(五大题型)(讲通):

    这是一份最新高考数学一轮复习【讲通练透】 第02讲 成对数据的统计分析(五大题型)(讲通),文件包含第02讲成对数据的统计分析五大题型讲义原卷版docx、第02讲成对数据的统计分析五大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        最新高考数学一轮复习【讲通练透】 第03讲 等式与不等式的性质(五大题型)(讲通)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map