专题40 图形折叠中的落点固定问题-2024年中考数学重难点专项突破(全国通用)
展开1、如图例8-1,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为 .
图例8-1
图例8-2 图例8-3
2、如图例9-1,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B’处,过点B’作AD的垂线,分别交AD、BC于点M、N,当点B’为线段MN的三等分点时,BE的长为.
图例9-1
【针对训练】
1、如图,将边长为6的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N
(1)若CM=x,则CH= (用含x的代数式表示);
(2)求折痕GH的长.
2、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A (11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(1)如图①,当∠BOP=30°时,求点P的坐标;
(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);
(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).
3、如图,在菱形纸片ABCD中,AB=15,tan∠ABC=,将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,若CE⊥AD,则cs∠EFG的值为 .
4、如图,在菱形ABCD中,AB=5,tanD=,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为 .
5、如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB= 5 .
6、如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E恰在矩形ABCD的对称轴上,则BM的长为 5或 .
7、如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为 .
专题39 图形折叠中的等腰三角形问题-2024年中考数学重难点专项突破(全国通用): 这是一份专题39 图形折叠中的等腰三角形问题-2024年中考数学重难点专项突破(全国通用),文件包含专题39图形折叠中的等腰三角形问题原卷版docx、专题39图形折叠中的等腰三角形问题解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
专题30 图形折叠中的等腰三角形存在性问题-2024年中考数学重难点专项突破(全国通用): 这是一份专题30 图形折叠中的等腰三角形存在性问题-2024年中考数学重难点专项突破(全国通用),文件包含专题30图形折叠中的等腰三角形存在性问题原卷版docx、专题30图形折叠中的等腰三角形存在性问题解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
专题51 巧用图形的翻折解决几何问题-2022年中考数学重难点专项突破(全国通用): 这是一份专题51 巧用图形的翻折解决几何问题-2022年中考数学重难点专项突破(全国通用),文件包含专题51巧用图形的翻折解决几何问题解析版docx、专题51巧用图形的翻折解决几何问题原卷版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。