终身会员
搜索
    上传资料 赚现金
    2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.3 空间几何体积及表面积(精练)(基础版)(原卷版+解析版)
    立即下载
    加入资料篮
    2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.3 空间几何体积及表面积(精练)(基础版)(原卷版+解析版)01
    2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.3 空间几何体积及表面积(精练)(基础版)(原卷版+解析版)02
    2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.3 空间几何体积及表面积(精练)(基础版)(原卷版+解析版)03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.3 空间几何体积及表面积(精练)(基础版)(原卷版+解析版)

    展开
    这是一份2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.3 空间几何体积及表面积(精练)(基础版)(原卷版+解析版),共14页。试卷主要包含了柱锥台的体积,球的体积与表面积等内容,欢迎下载使用。

    1. (2023·青海)以边长为4的正方形的一边所在直线为旋转轴,将该正方形旋转一周 ,所得圆柱的侧面积为( )
    A.B.C.32D.16
    2. (2023·全国·高三专题练习)已知圆锥的轴截面是等腰直角三角形,且圆锥的母线长为2,则圆锥的侧面积是( ).
    A.B.2C.D.
    3. (2023·河北衡水·二模)已知某圆台的高为,上底面半径为,下底面半径为,则其侧面展开图的面积为( )
    A.B.C.D.
    4. (2023·全国·高三专题练习)已知长方体的表面积为62,所有棱长之和为40,则线段的长为( )
    A.B.C.D.
    5. (2023·全国·高三专题练习(理))已知圆锥的顶点为点,高是底面半径的倍,点,是底面圆周上的两点,当是等边三角形时面积为,则圆锥的侧面积为( )
    A.B.C.D.
    6. (2023·全国·高三专题练习(理))《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的体积为,则该圆锥的侧面积为( )
    A.B.C.D.
    题组二 柱锥台的体积
    1. (2023·全国·高三专题练习)如图是一个圆台的侧面展开图,其面积为,两个圆弧所在的圆半径分别为2和4,则该圆台的体积为( )
    A.B.C.D.
    2. (2023·山东·模拟预测)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,则它的体积为( )
    A.B.C.D.
    3. (2023·全国·高三专题练习)攒尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁式建筑、园林建筑.下面以圆形攒尖为例.如图所示的建筑屋顶可近似看作一个圆锥,其轴截面(过圆锥旋转轴的截面)是底边边长为,顶角为的等腰三角形,则该屋顶的体积约为( )
    A.B.C.D.
    4. (2023·湖北武汉·高三开学考试)2022年7月,台风“暹芭”登陆我国.某兴趣小组为了解台风“暹芭”对本市降雨量的影响,在下雨时,用一个圆台形的容器接雨水.已知该容器上底直径为56cm,下底直径为24cm,容器深18cm,若容器中积水深9cm,则平地降雨量是( )(注:平地降雨量等于容器中积水体积除以容器的上底面积)
    A.2cmB.3cmC.4cmD.5cm
    题组三 球的体积与表面积
    1.(2023·全国·高三专题练习)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,圆锥的底面圆周和顶点都在同一球面上,则该球的体积为( )
    A.B.C.D.
    2. (2023·全国·高三专题练习)已知三棱锥的所有顶点都在球的球面上,,,,为球的直径,,则这个三棱锥的体积为( )
    A.B.C.D.
    3. (2023·全国·高三专题练习)如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖,可放小球的最大半径为.若是放入一个正方体,合上盒盖,可放正方体的最大棱长为,则( )
    A.B.C.D.
    题组四 空间几何截面
    1. (2023·全国·高三专题练习)若一个圆锥的母线长为4,且其侧面积为其轴截面面积的4倍,则该圆锥的高为( )
    A.B.C.D.1
    2 (2023·青海·海东市第一中学模拟预测(文))已知圆锥的底面直径为,过一母线的截面是面积的等边三角形,则该圆锥的体积为________.
    3. (2023·全国·高三专题练习)若一个圆锥的母线长为4,且其侧面积为其轴截面面积的4倍,则该圆锥的高为( )
    A.B.C.D.1
    4.(2023·全国·高三专题练习)已知圆锥的母线长为5,侧面积为,过此圆锥的顶点作一截面,则截面面积最大为__________
    5. (2023·全国·高三阶段练习(文))古人为避雷和便于雨水下泄,常将屋顶设计成圆锥形状,多见于我国东南沿海地带,经测算某圆锥屋顶的轴截面为一个斜边长约为20米的等腰直角三角形,则圆锥的侧面积约为______ 平方米.
    7.3 空间几何体积及表面积(精练)(基础版)
    题组一 柱锥台的表面积
    1. (2023·青海)以边长为4的正方形的一边所在直线为旋转轴,将该正方形旋转一周 ,所得圆柱的侧面积为( )
    A.B.C.32D.16
    【答案】A
    【解析】以边长为4的正方形的一边所在直线为旋转轴,旋转一周得到的旋转体为圆柱,其底面半径,高,故其侧面积.故选:A
    2. (2023·全国·高三专题练习)已知圆锥的轴截面是等腰直角三角形,且圆锥的母线长为2,则圆锥的侧面积是( ).
    A.B.2C.D.
    【答案】D
    【解析】
    如图,由题意知为等腰直角三角形,则,底面圆周长为,
    故圆锥的侧面积为.故选:D.
    3. (2023·河北衡水·二模)已知某圆台的高为,上底面半径为,下底面半径为,则其侧面展开图的面积为( )
    A.B.C.D.
    【答案】C
    【解析】易知母线长为,且上底面圆周为,下底面圆周为,易知展开图为圆环的一部分,圆环所在的小圆半径为3,则大圆半径为6,
    所以面积.故选:C.
    4. (2023·全国·高三专题练习)已知长方体的表面积为62,所有棱长之和为40,则线段的长为( )
    A.B.C.D.
    【答案】A
    【解析】
    由题意知:,,故,则,所以.
    故选:A.
    5. (2023·全国·高三专题练习(理))已知圆锥的顶点为点,高是底面半径的倍,点,是底面圆周上的两点,当是等边三角形时面积为,则圆锥的侧面积为( )
    A.B.C.D.
    【答案】D
    【解析】设圆锥的高为h,母线为l,底面半径为r,
    则由题意得h=r, ,
    所以,
    又,则,
    所以圆锥的侧面积为,故选;D
    6. (2023·全国·高三专题练习(理))《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的体积为,则该圆锥的侧面积为( )
    A.B.C.D.
    【答案】C
    【解析】由题意设圆锥的底面圆的半径为,因为为等腰直角三角形,则高为,母线长为,因为圆锥的体积为,所以,解得,所以该圆锥的侧面积为.
    故选:C
    题组二 柱锥台的体积
    1. (2023·全国·高三专题练习)如图是一个圆台的侧面展开图,其面积为,两个圆弧所在的圆半径分别为2和4,则该圆台的体积为( )
    A.B.C.D.
    【答案】D
    【解析】圆台的侧面展开图是一扇环,设该扇环的圆心角为,
    则其面积为,得,
    所以扇环的两个圆弧长分别为和,
    设圆台的上底半径,下底半径分别为,圆台的高为,

    所以,,又圆台的母线长
    所以圆台的高为,
    所以圆台的体积为.
    故选:D.
    2. (2023·山东·模拟预测)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,则它的体积为( )
    A.B.C.D.
    【答案】B
    【解析】设该直角圆锥的底面圆半径为r,高为h,母线长为l,
    因为直角圆锥的轴截面为等腰直角三角形,所以,.
    因为直角圆锥的侧面积为,所以,解得,
    所以该直角圆锥的体积为.故选:B.
    3. (2023·全国·高三专题练习)攒尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁式建筑、园林建筑.下面以圆形攒尖为例.如图所示的建筑屋顶可近似看作一个圆锥,其轴截面(过圆锥旋转轴的截面)是底边边长为,顶角为的等腰三角形,则该屋顶的体积约为( )
    A.B.C.D.
    【答案】B
    【解析】因为轴截面的顶角为,所以底角,
    在中,依题意,
    该圆形攒尖的底面圆半径,高,
    则(),
    所以该屋顶的体积约为.
    故选:B.
    4. (2023·湖北武汉·高三开学考试)2022年7月,台风“暹芭”登陆我国.某兴趣小组为了解台风“暹芭”对本市降雨量的影响,在下雨时,用一个圆台形的容器接雨水.已知该容器上底直径为56cm,下底直径为24cm,容器深18cm,若容器中积水深9cm,则平地降雨量是( )(注:平地降雨量等于容器中积水体积除以容器的上底面积)
    A.2cmB.3cmC.4cmD.5cm
    【答案】B
    【解析】根据题意可得,容器下底面面积为,上底面面积为,
    因为容器中积水高度为容器高度的,则积水上底面恰为容器的中截面,
    所以积水上底直径为cm,积水上底面面积为,
    所以积水体积为,
    则平地降雨量是cm.故选:B.
    题组三 球的体积与表面积
    1.(2023·全国·高三专题练习)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,圆锥的底面圆周和顶点都在同一球面上,则该球的体积为( )
    A.B.C.D.
    【答案】B
    【解析】设球半径为,圆锥的底面半径为,若一个直角圆锥的侧面积为,
    设母线为,则,
    所以直角圆锥的侧面积为:,
    可得:,,圆锥的高,
    由,解得:,
    所以球的体积等于,
    故选:B
    2. (2023·全国·高三专题练习)已知三棱锥的所有顶点都在球的球面上,,,,为球的直径,,则这个三棱锥的体积为( )
    A.B.C.D.
    【答案】C
    【解析】解:如图所示,由条件为直角三角形,则斜边的中点为的外接圆的圆心,
    连接得平面,,
    ,,
    平面,
    三棱锥的体积为.
    故选:C.
    3. (2023·全国·高三专题练习)如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖,可放小球的最大半径为.若是放入一个正方体,合上盒盖,可放正方体的最大棱长为,则( )
    A.B.C.D.
    【答案】D
    【解析】设储物盒所在球的半径为,如图,
    小球最大半径满足,所以,
    正方体的最大棱长满足,解得:,
    ∴,故选:D.
    题组四 空间几何截面
    1. (2023·全国·高三专题练习)若一个圆锥的母线长为4,且其侧面积为其轴截面面积的4倍,则该圆锥的高为( )
    A.B.C.D.1
    【答案】B
    【解析】如图所示,设圆锥的高为h,底面半径为r,则侧面积为,轴截面为等腰三角形PAB,面积为,其侧面积为其轴截面面积的4倍,所以,解得:
    故选:B
    2 (2023·青海·海东市第一中学模拟预测(文))已知圆锥的底面直径为,过一母线的截面是面积的等边三角形,则该圆锥的体积为________.
    【答案】
    【解析】由题意知:圆锥的底面半径;
    设圆锥的母线长为,则,解得:,
    圆锥的高,圆锥的体积.
    故答案为:.
    3. (2023·全国·高三专题练习)若一个圆锥的母线长为4,且其侧面积为其轴截面面积的4倍,则该圆锥的高为( )
    A.B.C.D.1
    【答案】B
    【解析】如图所示,设圆锥的高为h,底面半径为r,则侧面积为,轴截面为等腰三角形PAB,面积为,其侧面积为其轴截面面积的4倍,所以,解得:
    故选:B
    4.(2023·全国·高三专题练习)已知圆锥的母线长为5,侧面积为,过此圆锥的顶点作一截面,则截面面积最大为__________
    【答案】
    【解析】设圆锥的底面半径为r,则,

    圆锥的高,
    设轴截面中两母线夹角为,则,

    所以当两母线夹角为时,过此圆锥顶点的截面面积最大,
    最大面积为.
    故答案为:
    5. (2023·全国·高三阶段练习(文))古人为避雷和便于雨水下泄,常将屋顶设计成圆锥形状,多见于我国东南沿海地带,经测算某圆锥屋顶的轴截面为一个斜边长约为20米的等腰直角三角形,则圆锥的侧面积约为______ 平方米.
    【答案】
    【解析】依题意,圆锥的底面半径为10米,母线长为米,
    于是其侧面积为(平方米).
    故答案为:.
    相关试卷

    2024年新高考专用数学第一轮复习讲义一隅三反基础版 6.1 抽样方法及特征数(精练)(基础版)(原卷版+解析版): 这是一份2024年新高考专用数学第一轮复习讲义一隅三反基础版 6.1 抽样方法及特征数(精练)(基础版)(原卷版+解析版),共24页。

    2024年新高考专用数学第一轮复习讲义一隅三反基础版 5.2 平面向量的数量积及坐标运算(精练)(基础版)(原卷版+解析版): 这是一份2024年新高考专用数学第一轮复习讲义一隅三反基础版 5.2 平面向量的数量积及坐标运算(精练)(基础版)(原卷版+解析版),共23页。试卷主要包含了平面向量与其他知识的综合运用等内容,欢迎下载使用。

    2024年新高考专用数学第一轮复习讲义一隅三反基础版 4.4 求和方法(精练)(基础版)(原卷版+解析版): 这是一份2024年新高考专用数学第一轮复习讲义一隅三反基础版 4.4 求和方法(精练)(基础版)(原卷版+解析版),共34页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.3 空间几何体积及表面积(精练)(基础版)(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map