2024年中考数学几何模型专项复习讲与练 模型34 旋转——费马点模型-原卷版+解析
展开费马点:到一个三角形三个顶点距离之和最小的点,称为三角形的费马点.
当PA+PB+PC取最小值时,点P叫三角形的费马点.
◎结论:如图,△ABC的三个内角均不大于120°,点P在形内,
当∠BPC=∠APC=∠CPA=120时,PA+PB+PC的值最小.
【证明】如图,将△ABP绕点B逆时针旋转 60°,得到△A1BP1,
连接 PP1,则△BPP1是等边三角形,所以 PB=PP1.
由旋转的性质可得PA+PB+PC = P1A1+PP1+PC≥A1C,
∴当A1、P1、P、C四点共线时,PA+PB+PC的值最小,
∵△BPP1是等边三角形,∠BPP1=60º,
∴∠BPC=120º,
∵∠APB=∠A1P1B,∠BP1P=60º,
∴∠APB=180º-60º=120º
则∠CPA=360º-120º-120º=120º,
故∠BPC=∠APC=∠CPA=120º.
费马点作法:
分别以AC、BC、AB为边作等边△ACD、△BCE、△ABF,连接CF,BD,AE,
由手拉手可得△ACE≌△DCB,△ABE≌△FBC,
∴AE=BD,AE=CF,
∴AE=BD=CF
旋转角:∠BPE=∠EPC=∠CPD=60°
eq \\ac(○,巧) eq \\ac(○,记) eq \\ac(○,口) eq \\ac(○,诀)
有等边,求长度,不好求,作等边
1. (2023·四川·成都实外九年级阶段练习)如图,在中,,P是内一点,求的最小值为______.
2. (2023·全国·九年级专题练习)如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
1. (2023·福建三明·八年级期中)【问题背景】17世纪有着“业余数学家之王”美誉的法国律师皮耶·德·费马,提出一个问题:求作三角形内的一个点,使它到三角形三个顶点的距离之和最小后来这点被称之为“费马点”.
如图,点是内的一点,将绕点逆时针旋转60°到,则可以构造出等边,得,,所以的值转化为的值,当,,,四点共线时,线段的长为所求的最小值,即点为的“费马点”.
(1)【拓展应用】
如图1,点是等边内的一点,连接,,,将绕点逆时针旋转60°得到.
①若,则点与点之间的距离是______;
②当,,时,求的大小;
(2)如图2,点是内的一点,且,,,求的最小值.
2. (2023·江苏·苏州工业园区星湾学校八年级期中)背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.
(1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
(2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
(3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
(4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
3. (2023·全国·九年级专题练习)如图,△ABC中,∠BAC=45°,AB=6,AC=4,P为平面内一点,求最小值
1.如图,在平面直角坐标系xy中,点B的坐标为(0,2),点在轴的正半轴上,,OE为△BOD的中线,过B、两点的抛物线与轴相交于、两点(在的左侧).
(1)求抛物线的解析式;
(2)等边△的顶点M、N在线段AE上,求AE及的长;
(3)点为△内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.
2. (2023·广东广州·一模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC于点D,线段AD上存在一点Q,当QA+QB+QC的值取得最小值,且AQ=2时,则PD=________.
旋转
模型(三十四)——费马点模型
费马点:到一个三角形三个顶点距离之和最小的点,称为三角形的费马点.
当PA+PB+PC取最小值时,点P叫三角形的费马点.
◎结论:如图,△ABC的三个内角均不大于120°,点P在形内,
当∠BPC=∠APC=∠CPA=120时,PA+PB+PC的值最小.
【证明】如图,将△ABP绕点B逆时针旋转 60°,得到△A1BP1,
连接 PP1,则△BPP1是等边三角形,所以 PB=PP1.
由旋转的性质可得PA+PB+PC = P1A1+PP1+PC≥A1C,
∴当A1、P1、P、C四点共线时,PA+PB+PC的值最小,
∵△BPP1是等边三角形,∠BPP1=60º,
∴∠BPC=120º,
∵∠APB=∠A1P1B,∠BP1P=60º,
∴∠APB=180º-60º=120º
则∠CPA=360º-120º-120º=120º,
故∠BPC=∠APC=∠CPA=120º.
费马点作法:
分别以AC、BC、AB为边作等边△ACD、△BCE、△ABF,连接CF,BD,AE,
由手拉手可得△ACE≌△DCB,△ABE≌△FBC,
∴AE=BD,AE=CF,
∴AE=BD=CF
旋转角:∠BPE=∠EPC=∠CPD=60°
eq \\ac(○,巧) eq \\ac(○,记) eq \\ac(○,口) eq \\ac(○,诀)
有等边,求长度,不好求,作等边
1. (2023·四川·成都实外九年级阶段练习)如图,在中,,P是内一点,求的最小值为______.
【答案】
【分析】将△APC绕点C顺时针旋转得△DFC,可得PC=PF,DF=AP,将转化为,此时当B、P、F、D四点共线时,的值最小,最小值为BD的长;根据勾股定理求解即可.
【详解】解:将△APC绕点C顺时针旋转得△DFC,连接PF、AD、DB,过点D作DE⊥BA,交BA的延长线于点E;
∴AP=DF,∠PCF=∠ACD=,PC=FC,AC=CD,
∴△PCF、△ACD是等边三角形,
∴PC=PF,AD=AC=1,∠DAC=
∴,
∴当B、P、F、D四点共线时,的值最小,最小值为BD的长;
∵,∠CAD=,
∴∠EAD=,
∴,
∴,
∴,
∴,
∴的值最小值为.
故答案为:.
【点睛】本题考查费马点问题,解题的关键在于将△APC绕点C顺时针旋转得△DFC,将三条线段的长转化到一条直线上.
2. (2023·全国·九年级专题练习)如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
【答案】
【分析】以BM为边作等边△BMN,以BC为边作等边△BCE,如图,则△BCM≌△BEN,由全等三角形的对应边相等得到CM=NE,进而得到AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.根据等腰三角形“三线合一”的性质得到BH⊥AE,AH=EH,根据30°直角三角形三边的关系即可得出结论.
【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.
∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,∴BH=AB=3,AH=BH=,∴AE=2AH=.
故答案为.
【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.
1. (2023·福建三明·八年级期中)【问题背景】17世纪有着“业余数学家之王”美誉的法国律师皮耶·德·费马,提出一个问题:求作三角形内的一个点,使它到三角形三个顶点的距离之和最小后来这点被称之为“费马点”.
如图,点是内的一点,将绕点逆时针旋转60°到,则可以构造出等边,得,,所以的值转化为的值,当,,,四点共线时,线段的长为所求的最小值,即点为的“费马点”.
(1)【拓展应用】
如图1,点是等边内的一点,连接,,,将绕点逆时针旋转60°得到.
①若,则点与点之间的距离是______;
②当,,时,求的大小;
(2)如图2,点是内的一点,且,,,求的最小值.
【答案】(1)①3;②150°;
(2)
【分析】(1)①根据旋转的性质即可求出的值;
②先证△ABP≌,利用全等的性子求出对应的边长,通过勾股定理的逆定理得到,即可求出的大小;
(2)将△APC绕C点顺时针旋转60°得到,先求出,然后证明为等边三角形,当B、P、、四点共线时,和最小,用勾股定理求出的值即可.
(1)
①如图,将绕A逆时针旋转60°,
则,,
∴为等边三角形,
;
②∵△ABC为等边三角形,
∴AB=AC,∠BAP+∠PAC=60°,
又∵是等边三角形,
∴∠PAC+=60°,
∴∠BAP=,
在△ABP与中,,
∴△ABP≌(SAS),
∴
∴,,
,
又∵旋转,∴;
(2)
如图,将△APC绕C点顺时针旋转60°得到,
则,
在中,,
,
,
又∵,
,,
过作⊥BC交BC的延长线于点D,
则,
,
(30°所对的直角边等于斜边的一半),
,
,为等边三角形,
当B、P、、四点共线时,和最小,
在中,,
,
∴的最小值为.
【点睛】本题考查了旋转变换,全等三角形的判定和性质,解题的关键在于能够添加辅助线构造全等三角形解决问题.
2. (2023·江苏·苏州工业园区星湾学校八年级期中)背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.
(1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
(2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
(3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
(4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
【答案】(1)150°;
(2)见详解;
(3);
(4).
【分析】(1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;
(2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;
(3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;
(4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.
(1)
解:连结PP′,
∵≌,
∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,
∵△ABC为等边三角形,
∴∠BAC=60°
∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,
∴△APP′为等边三角形,
,∴PP′=AP=3,∠AP′P=60°,
在△P′PC中,PC=5,
,
∴△PP′C是直角三角形,∠PP′C=90°,
∴∠AP′C=∠APP+∠PPC=60°+90°=150°,
∴∠APB=∠AP′C=150°,
故答案为150°;
(2)
证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,
∵△APB≌△AB′P′,
∴AP=AP′,PB=PB′,AB=AB′,
∵∠PAP′=∠BAB′=60°,
∴△APP′和△ABB′均为等边三角形,
∴PP′=AP,
∵,
∴点C,点P,点P′,点B′四点共线时,最小=CB′,
∴点P在CB′上,
∴过的费马点.
(3)
解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,
∴△APB≌△AP′B′,
∴AP′=AP,AB′=AB,
∵∠PAP′=∠BAB′=60°,
∴△APP′和△ABB′均为等边三角形,
∴PP′=AP,BB′=AB,∠ABB′=60°,
∵
∴点C,点P,点P′,点B′四点共线时,最小=CB′,
∵,,,
∴AB=2AC=2,根据勾股定理BC=
∴BB′=AB=2,
∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,
∴在Rt△CBB′中,B′C=
∴最小=CB′=;
(4)
解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,
∴△BCE≌△CE′B′,
∴BE=B′E′,CE=CE′,CB=CB′,
∵∠ECE′=∠BCB′=60°,
∴△ECE′与△BCB′均为等边三角形,
∴EE′=EC,BB′=BC,∠B′BC=60°,
∵,
∴点C,点E,点E′,点B′四点共线时,最小=AB′,
∵四边形ABCD为正方形,
∴AB=BC=2,∠ABC=90°,
∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,
∵B′F⊥AF,
∴BF=,BF=,
∴AF=AB+BF=2+,
∴AB′=,
∴最小=AB′=.
【点睛】本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.
3. (2023·全国·九年级专题练习)如图,△ABC中,∠BAC=45°,AB=6,AC=4,P为平面内一点,求最小值
【答案】
【分析】将△APC绕点A逆时针旋转45°,得到△A,将△A扩大倍,得到△,当点B、P、、在同一直线上时,=最短,利用勾股定理求出即可.
【详解】解:如图,将△APC绕点A逆时针旋转45°,得到△A,将△A扩大,相似比为倍,得到△,则,,,
过点P作PE⊥A于E,
∴AE=,
∴E=A-AE=,
∴P=,
当点B、P、、在同一直线上时,=最短,此时=B,
∵∠BA=∠BAC+∠CA=90°,AB=6,,
∴.
∴=B=
【点睛】此题考查旋转的性质,全等三角形的性质,勾股定理,正确理解费马点问题的造图方法:利用旋转及全等的性质构建等量的线段,利用三角形的三边关系及点共线的知识求解,有时根据系数将图形扩大或缩小构建图形
1.如图,在平面直角坐标系xy中,点B的坐标为(0,2),点在轴的正半轴上,,OE为△BOD的中线,过B、两点的抛物线与轴相交于、两点(在的左侧).
(1)求抛物线的解析式;
(2)等边△的顶点M、N在线段AE上,求AE及的长;
(3)点为△内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.
【答案】(1) (2) ;或 (3)可以取到的最小值为.当取得最小值时,线段的长为
【分析】(1)已知点B的坐标,可求出OB的长;在Rt△OBD中,已知了∠ODB=30°,通过解直角三角形即可求得OD的长,也就得到了点D的坐标;由于E是线段BD的中点,根据B、D的坐标即可得到E点的坐标;将B、E的坐标代入抛物线的解析式中,即可求得待定系数的值,由此确定抛物线的解析式;
(2)过E作EG⊥x轴于G,根据A、E的坐标,即可用勾股定理求得AE的长;过O作AE的垂线,设垂足为K,易证得△AOK∽△AEG,通过相似三角形所得比例线段即可求得OK的长;在Rt△OMK中,通过解直角三角形,即可求得MK的值,而AK的长可在Rt△AOK中由勾股定理求得,根据AM=AK-KM或AM=AK+KM即可求得AM的长;
(3)由于点P到△ABO三顶点的距离和最短,那么点P是△ABO的费马点,即∠APO=∠OPB=∠APB=120°;易证得△OBE是等边三角形,那么PA+PO+PB的最小值应为AE的长;求AP的长时,可作△OBE的外接圆(设此圆为⊙Q),那么⊙Q与AE的交点即为m取最小值时P点的位置;设⊙Q与x轴的另一交点(O点除外)为H,易求得点Q的坐标,即可得到点H的坐标,也就得到了AH的长,相对于⊙Q来说,AE、AH都是⊙Q的割线,根据割线定理(或用三角形的相似)即可求得AP的长.
【详解】(1)过E作EG⊥OD于G
∵∠BOD=∠EGD=90°,∠D=∠D,
∴△BOD∽△EGD,
∵点B(0,2),∠ODB=30°,
可得OB=2,OD=2;
∵E为BD中点,
∴=
∴EG=1,GD=
∴OG=
∴点E的坐标为(,1)
∵抛物线经过、两点,
∴.
可得.
∴抛物线的解析式为.
(2)∵抛物线与轴相交于、,在的左侧,
∴点的坐标为.
过E作EG⊥x轴于G
∴,
∴在△AGE中,,
.
过点作⊥于,
可得△∽△.
∴.
∴.
∴
∴.
∵△是等边三角形,
∴.
∴.
∴,或
(3)如图;
以AB为边做等边三角形AO′B,以OA为边做等边三角形AOB′;
易证OE=OB=2,∠OBE=60°,则△OBE是等边三角形;
连接OO′、BB′、AE,它们的交点即为m最小时,P点的位置(即费马点);
∵OA=OB′,∠B′OB=∠AOE=150°,OB=OE,
∴△AOE≌△B′OB;
∴∠B′BO=∠AEO;
∵∠BOP=∠EOP′,而∠BOE=60°,
∴∠POP'=60°,
∴△POP′为等边三角形,
∴OP=PP′,
∴PA+PB+PO=AP+OP′+P′E=AE;
即m最小=AE=
如图;作正△OBE的外接圆⊙Q,
根据费马点的性质知∠BPO=120°,则∠PBO+∠BOP=60°,而∠EBO=∠EOB=60°;
∴∠PBE+∠POE=180°,∠BPO+∠BEO=180°;
即B、P、O、E四点共圆;
易求得Q(,1),则H(,0);
∴AH=;
由割线定理得:AP•AE=OA•AH,
即:AP=OA•AH÷AE=×÷=
故: 可以取到的最小值为.
当取得最小值时,线段的长为
【点睛】此题是二次函数的综合类试题,涉及到二次函数解析式的确定、等边三角形的性质、解直角三角形以及费马点位置的确定和性质,能力要求极高,难度很大.
2. (2023·广东广州·一模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC于点D,线段AD上存在一点Q,当QA+QB+QC的值取得最小值,且AQ=2时,则PD=________.
【答案】
【分析】如图1,将△BQC绕点B顺时针旋转60°得到△BNM,连接QN,当点A,点Q,点N,点M共线时,QA+QB+QC值最小,此时,如图2,连接MC,证明AM垂直平分BC,证明AD=BD,此时P与D重合,设PD=x,则DQ=x-2,构建方程求出x可得结论.
【详解】解:如图1,将△BQC绕点B顺时针旋转60°得到△BNM,连接QN,
∴BQ=BN,QC=NM,∠QBN=60°,
∴△BQN是等边三角形,
∴BQ=QN,
∴QA+QB+QC=AQ+QN+MN,
∴当点A,点Q,点N,点M共线时,QA+QB+QC值最小,
此时,如图2,连接MC
∵将△BQC绕点B顺时针旋转60°得到△BNM,
∴BQ=BN,BC=BM,∠QBN=60°=∠CBM,
∴△BQN是等边三角形,△CBM是等边三角形,
∴∠BQN=∠BNQ=60°,BM=CM,
∵BM=CM,AB=AC,
∴AM垂直平分BC,
∵AD⊥BC,∠BQD=60°,
∴BD=QD,
∵AB=AC,∠BAC=90°,AD⊥BC,
∴AD=BD,此时P与D重合,设PD=x,则DQ=x-2,
∴x=,
∴x=3+,
∴PD=3+.
故答案为:.
【点睛】本题主要考查了等腰直角三角形的性质,旋转的性质,等边三角形的判定和性质,解题的关键是正确运用等边三角形的性质解决问题,学会构建方程解决问题.
2024年中考数学几何模型专项复习讲与练 模型33 旋转——奔驰模型-原卷版+解析: 这是一份2024年中考数学几何模型专项复习讲与练 模型33 旋转——奔驰模型-原卷版+解析,共20页。
中考数学几何模型专项复习 模型43 相似形——旋转相似模型-(原卷版+解析): 这是一份中考数学几何模型专项复习 模型43 相似形——旋转相似模型-(原卷版+解析),共16页。
中考数学几何模型专项复习 模型36 圆——四点共圆模型-(原卷版+解析): 这是一份中考数学几何模型专项复习 模型36 圆——四点共圆模型-(原卷版+解析),共17页。