专题一 培优点4 极值点偏移问题--2024年高考数学复习二轮讲义
展开考点一 对称化构造函数
例1 (2023·唐山模拟)已知函数f(x)=xe2-x.
(1)求f(x)的极值;
(2)若a>1,b>1,a≠b,f(a)+f(b)=4,证明:a+b<4.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 对称化构造函数法构造辅助函数
(1)对结论x1+x2>2x0型,构造函数F(x)=f(x)-f(2x0-x).
(2)对结论x1x2>xeq \\al(2,0)型,方法一是构造函数F(x)=f(x)-f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x\\al(2,0),x))),通过研究F(x)的单调性获得不等式;方法二是两边取对数,转化成ln x1+ln x2>2ln x0,再把ln x1,ln x2看成两变量即可.
跟踪演练1 (2022·全国甲卷)已知函数f(x)=eq \f(ex,x)-ln x+x-a.
(1)若f(x)≥0,求a的取值范围;
(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考点二 比值代换
例2 (2023·沧州模拟)已知函数f(x)=ln x-ax-1(a∈R).若方程f(x)+2=0有两个实根x1,x2,且x2>2x1,求证:x1xeq \\al(2,2)>eq \f(32,e3).(参考数据:ln 2≈0.693,ln 3≈1.099)
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 比值代换法是指通过代数变形将所证的双变量不等式通过代换t=eq \f(x1,x2)化为单变量的函数不等式,利用函数单调性证明.
跟踪演练2 (2023·淮北模拟)已知a是实数,函数f(x)=aln x-x.
(1)讨论f(x)的单调性;
(2)若f(x)有两个相异的零点x1,x2且x1>x2>0,求证:x1x2>e2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
专题一 培优点4 极值点偏移问题2024年高考数学: 这是一份专题一 培优点4 极值点偏移问题2024年高考数学,共2页。
专题1.4 极值点偏移第二招——含参数的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版): 这是一份专题1.4 极值点偏移第二招——含参数的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版),共17页。试卷主要包含了已知是函数的两个零点,且,已知函数,若存在,使,求证等内容,欢迎下载使用。
专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版): 这是一份专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版),共10页。