中考数学一轮复习考点过关练习《矩形》(含答案)
展开一、选择题
1.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于( )
A.30° B.45° C.60° D.75°
2.矩形的对角线一定具有的性质是( )
A.互相垂直 B.互相垂直且相等 C.相等 D.互相垂直平分
3.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边中点D重合,若BC=8,CD=6,则CF长为( )
A.1.5 B.eq \f(5,3) C.2 D.1
4.如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )
A.600m2 B.551m2 C.550m2 D.500m2
5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A.△AFD≌△DCE B.AF=eq \f(1,2)AD C.AB=AF D.BE=AD﹣DF
6.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( )
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )
A.测量对角线是否相互平分
B.测量两组对边是否分别相等
C.测量一组对角是否为直角
D.测量四边形的其中三个角是否都为直角
8.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )
A.OM=eq \f(1,2)AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
9.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )
A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4
10.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是( )
A.2 B.4 C.eq \r(2) D.2eq \r(2)
二、填空题
11.如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号) .
12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,E,F,G,H分别为边AD,AB,BC,CD的中点,若AC=8,BD=6,则四边形EFGH的面积为____.
13.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1= .
14.如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中△AFC是 三角形.
15.如图,矩形△ABCD中,AB=2,AD=1,E为CD中点,P为AB边上一动点(含端点),F为CP中点,则△CEF的周长最小值为______.
16.如图,四边形ABCD是矩形,点E在线段BC的延长线上,连接AE交CD于点F,∠AED=2∠AEB,点G是AF的中点.若CE=1,AG=3,则AB的长为 .
三、解答题
17.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
18.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.
(1)求EF的长;
(2)求四边形ABCE的面积.
19.如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分线.
20.如图,延长平行四边形ABCD的边DC到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.
(1)求证:BF=CF;
(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四边形ABCD的面积.
21.如图,在▱ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.
22.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,求△ABC的面积.
答案
1.C
2.C.
3.B.
4.B.
5.B.
6.C.
7.D.
8.A.
9.C.
10.D.
11.答案为:①④.
12.答案为:12;
13.答案为:62°.
14.答案为:等腰直角.
15.答案为:eq \r(2)+1.
16.答案为: 2.
17.(1)证明:∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,∠ABC=90°.
∵BE=DF,
∴OE=OF.
又∵∠AOE=∠COF,
∴△AOE≌△COF(SAS),
∴AE=CF;
(2)解:∵OA=OC,OB=OD,AC=BD,
∴OA=OB.
∵∠AOB=∠COD=60°,
∴△AOB是等边三角形,
∴OA=AB=6,
∴AC=2OA=12.
在Rt△ABC中,BC=eq \r(AC2-AB2)=6eq \r(3),
∴矩形ABCD的面积为AB·BC=6×6eq \r(3)=36eq \r(3).
18.解:(1)设EF=x依题意知:△CDE≌△CFE,
∴DE=EF=x,CF=CD=6.
∵在Rt△ACD中,AC=10,
∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.
在Rt△AEF中,有AE2=AF2+EF2
即(8﹣x)2=42+x2
解得x=3,即:EF=3.
(2)由(1)知:AE=8﹣3=5,
∴S梯形ABCE=(5+8)×6÷2=39.
19.证明:(1)∵四边形ABCD是矩形,
∴∠B=90°,AD=BC,AD∥BC,
∴∠DAE=∠AFB,
∵DE⊥AF,
∴∠DEA=∠B=90°,
∵AF=BC,
∴AF=AD,
在△DEA和△ABF中
∵,
∴△DEA≌△ABF(AAS);
(2)证明:∵由(1)知△ABF≌△DEA,
∴DE=AB,
∵四边形ABCD是矩形,
∴∠C=90°,DC=AB,
∴DC=DE.
∵∠C=∠DEF=90°
∴在Rt△DEF和Rt△DCF中
∴Rt△DEF≌Rt△DCF(HL)
∴∠EDF=∠CDF,
∴DF是∠EDC的平分线.
20.证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,BC=AD,
∵CE=DC,
∴AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴BF=CF;
(2)解:∵由(1)知,四边形ABEC是平行四边形,
∴FA=FE,FB=FC.
∵四边形ABCD是平行四边形,
∴∠ABC=∠D.
又∵∠AFC=2∠D,
∴∠AFC=2∠ABC.
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形,
∴∠BAC=90°,
∵BC=AD=4,
∴AC=2eq \r(3),
∴平行四边形ABCD的面积=AB•AC=2×2eq \r(3)=4eq \r(3).
21.解:(1)∵CF=BE,∴CF+EC=BE+EC,即EF=BC.
∵在▱ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四边形AEFD是平行四边形.
∵AE⊥BC,
∴∠AEF=90°.
∴四边形AEFD是矩形
(2)∵四边形AEFD是矩形,DE=8,
∴AF=DE=8.
∵AB=6,BF=10,
∴AB2+AF2=62+82=100=BF2.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面积=eq \f(1,2)AB·AF=eq \f(1,2)BF·AE.
∴AE=eq \f(AB·AF,BF)=eq \f(6×8,10)=eq \f(24,5).
22.证明:(1)∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;
理由如下:由(1)得:EO=FO,
又∵O是AC的中点,
∴AO=CO,
∴四边形CEAF是平行四边形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四边形CEAF是矩形;
(3)解:由(2)得:四边形CEAF是矩形,
∴∠AEC=90°,
∴AC==5,
△ACE的面积=eq \f(1,2)AE×EC=eq \f(1,2)×3×4=6,
∵122+52=132,即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴△ABC的面积=eq \f(1,2)AB•AC=eq \f(1,2)×12×5=30.
中考数学一轮复习考点过关练习《实数》(含答案): 这是一份中考数学一轮复习考点过关练习《实数》(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习考点过关训练考点23 矩形与正方形(含解析): 这是一份中考数学一轮复习考点过关训练考点23 矩形与正方形(含解析),共1页。
中考数学一轮复习考点过关练习考点27 概率 (含答案): 这是一份中考数学一轮复习考点过关练习考点27 概率 (含答案),共30页。试卷主要包含了事件的分类,概率的计算,利用频率估计概率,概率的应用等内容,欢迎下载使用。