类型二 整式及分式化简(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用)
展开1.下列等式正确的是( )
A.B.
C.D.
【答案】D
【分析】
依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可.
【详解】
A. ,不符合题意
B. ,不符合题意
C. ,不符合题意
D. ,符合题意
故选D.
【点睛】
本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义.
2.下列运算正确的是( )
A. B. C. D.
【答案】A
【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解.
【详解】解:A、,故本选项正确,符合题意;
B、,故本选项错误,不符合题意;
C、,故本选项错误,不符合题意;
D、,故本选项错误,不符合题意;故选:A
【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.
3.下列运算中,正确的是( )
A.B.
C.D.
【答案】D
【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.
【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;
B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;
C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;
D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;
故选:D
【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.
4.计算的结果是( )
A.1B.C.D.
【答案】A
【分析】利用同分母分式的加法法则计算,约分得到结果即可.
【详解】解:.故选:A.
【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.
5.已知,且,则的值是( )
A.B.C.D.
【答案】B
【分析】先将分式进件化简为,然后利用完全平方公式得出,,代入计算即可得出结果.
【详解】解:,
∵,∴,∴,
∵a>b>0,∴,
∵,∴,∴,
∵a>b>0,∴,∴原式=,故选:B.
【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键.
6.下列计算正确的是( )
A. B. C. D.
【答案】D
【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.
【详解】解:A.,故该选项错误,不符合题意;
B.,故该选项错误,不符合题意;
C.,故该选项错误,不符合题意;
D.,故该选项正确,符合题意;故选:D.
【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.
7.下列计算正确的是( )
A. B. C. D.
【答案】A
【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.
【详解】解:A、,原式计算正确;
B、,原式计算错误;
C、,原式计算错误;
D、,原式计算错误;故选:A.
【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.
8.因式分解:__________.
【答案】
【详解】
解:=;
故答案为
9.分解因式:=______.
【答案】x(x+2)(x﹣2).
【详解】
试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用;因式分解.
10.分解因式:2a3﹣8a=________.
【答案】2a(a+2)(a﹣2)
【详解】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
11.因式分= .
【答案】.
【详解】
原式=.故答案为.
考点:1.因式分解-运用公式法;2.因式分解.
12.分解因式:_____________.
【答案】x(x-3)
【详解】
直接提公因式x即可,即原式=x(x-3).
13.分解因式:=______.
【答案】a(b+1)(b﹣1).
【详解】
解:原式==a(b+1)(b﹣1),
故答案为a(b+1)(b﹣1).
14.分解因式:_____.
【答案】
【分析】
直接根据平方差公式进行因式分解即可.
【详解】
,
故填
【点睛】
本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.
15.因式分解:_____.
【答案】
【分析】根据提公因式法和平方差公式进行分解即可.
【详解】解:,
故答案为:
【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.
16.分解因式: = ______.
【答案】
【分析】利用提公因式法即可分解.
【详解】,
故答案为:.
【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.
17.分解因式:x2-2x+1=__________.
【答案】(x-1)2
【详解】由完全平方公式可得:
故答案为.
【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
18.若分式有意义,则x的取值范围是________.
【答案】
【分析】根据分式有意义的条件即可求解.
【详解】解:∵分式有意义,∴,
解得.故答案为:.
【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.
19.计算﹣=_____.
【答案】1
【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可.
【详解】解:﹣=故答案为:1.
【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.
20.化简: =____________.
【答案】
【分析】根据分式混合运算的顺序,依次计算即可.
【详解】=
故答案为
【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.
21.化简:.
【解析】
.
【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.
22.先化简,再求值:,其中.
【答案】;2
【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入即可求解.
【详解】
当时,
原式.
【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.
23.先化简,再求值:,其中,.
【答案】,
【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算.
【详解】解:原式,
将,代入式中得:
原式.
【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键.
24.已知,求的值.
【答案】,3
【分析】先将代数式化简,根据可得,整体代入即可求解.
【详解】原式.
∵,
∴.
∴原式.
【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.
25.先因式分解,再计算求值:,其中.
【答案】,30
【分析】
先利用提公因式法和平方差公式进行因式分解,再代入x的值即可.
【详解】
解:,
当时,原式.
【点睛】
本题考查因式分解,掌握提公因式法和公式法是解题的关键.
26.先化简,再求值:,其中.
【答案】,7.
【分析】
先计算完全平方公式、平方差公式,再计算整式的加减法,然后将代入求值即可得.
【详解】
解:原式,
,
将代入得:原式.
【点睛】
本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键.
27.先化简,再求值:,其中.
【答案】
【分析】
首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a的值代入化简后的式子,即可解答本题.
【详解】
当时,
原式=.
【点睛】
本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
28.先化简,再求值:,其中.
【答案】,
【分析】
先根据平方差公式和单项式乘以多项式进行计算,再合并同类项,最后代入求出答案即可.
【详解】
解:
,
当时,原式.
【点睛】
本题考查了平方差公式,单项式乘以多项式,合并同类项,运用平方差公式是解题的关键.
29.已知,求的值.
【答案】-4
【分析】
根据已知求出xy=-2,再将所求式子变形为,代入计算即可.
【详解】
解:∵,
∴,
∴,
∴.
【点睛】
本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.
30.化简:
【答案】
【分析】直接根据分式的混合计算法则求解即可.
【详解】解:
.
【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.
31.先化简,再求值:,其中.
【答案】,
【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x的值即可求解.
【详解】
,
∵,
∴原式=.
【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键.
32.计算:
(1);(2).
【答案】(1)(2)
【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可;
(2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可.
(1)解:==
(2)解:
=
=
=
【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.
33.先化简,再求值:,其中.
【答案】;
【分析】
根据分式的混合运算法则进行化简,再结合特殊角的三角函数值求出a的值,再代入求解即可.
【详解】
解:原式
;
当时,
原式.
【点睛】
本题主要考查分式的化简求值问题,掌握运算法则与顺序,熟记特殊角的三角函数值是解题关键.
34.先化简,再求值:,其中.
【答案】,3
【分析】
先通分,再约分,将分式化成最简分式,再代入数值即可.
【详解】
解:原式
.
∵
∴原式.
【点睛】
本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键.
35.先化简,再求值:,其中.
【答案】,
【分析】
先去括号,然后再进行分式的化简,最后代值求解即可.
【详解】
解:原式=,
∵,
∴,
代入得:原式=.
【点睛】
本题主要考查分式的化简求解及特殊三角函数值,熟练掌握分式的化简求解及特殊三角函数值是解题的关键.
36.先化简,再求值:
,其中x满足.
【答案】x(x+1);6
【分析】
先求出方程的解,然后化简分式,最后选择合适的x代入计算即可.
【详解】
解:∵
∴x=2或x=-1
∴
=
=
=
=x(x+1)
∵x=-1分式无意义,∴x=2
当x=2时,x(x+1)=2×(2+1)=6.
【点睛】
本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x的值是解答本题的易错点.
37.先化简,再求值:,其中.
【答案】,.
【分析】
先计算括号内的分式加法,再计算分式的乘法,然后将代入求值即可得.
【详解】
解:原式,
,
,
将代入得:原式.
【点睛】
本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.
38.先化简,再求值:,其中x是中的一个合适的数.
【答案】,.
【分析】
先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x值代入计算即可.
【详解】
解:
,
∵,,
∴,
原式.
【点睛】
本题考查了分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.
39.先化简,然后从0,1,2,3中选一个合适的值代入求解.
【答案】,6
【分析】
将分子、分母因式分解除法转化为乘法,约分、合并同类项,选择合适的值时,a的取值不能使原算式的分母及除数为0.
【详解】
解:原式
因为a=0,1,2时分式无意义,所以
当时,原式
【点睛】
本题考查了分式的化简求值,关键是先化简,后代值,注意a的取值不能使原算式的分母及除数为0.
40.先化简,再求值:,其中.
【答案】,
【分析】
先通过约分、通分进行化简,再把给定的值代入计算即可.
【详解】
解:原式
,
当时,原式.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.
41.先化简,再求值:,其中.
【答案】;
【解析】
【分析】
先根据分式混合运算的法则把原式进行化简,再把的值代入式子进行计算即可.
【详解】
原式
当时,原式
【点睛】
本题主要考查的是分式的化简求值,最简二次根式,在解答此类型题目时,要注意因式分解、通分和约分的灵活运算,熟练掌握分式的混合运算法则是解题的关键.
42.先化简,再求值:,其中.
【答案】x+3,-1
【解析】
【分析】
先根据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.
【详解】
解:原式=
=,
将代入得:原式=-4+3=-1,
故答案为:-1.
【点睛】
本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
43.先化简,再求值:,其中m满足:.
【答案】
,1.
【解析】
【分析】
将分式运用完全平方公式及平方差公式进行化简,并根据m所满足的条件得出,将其代入化简后的公式,即可求得答案.
【详解】
解:原式为
=
=
=
=,
又∵m满足,即,将代入上式化简的结果,
∴原式=.
【点睛】
本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.
44.先化筒,再求值:其中
【答案】,0
【解析】
【分析】
直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.
【详解】
解:
,
,
,
;
∵,
所以,原式.
【点睛】
此题主要考查了分式的化简求值,正确进行分式的混合运算是解题的关键.
45.先化简,再求值:,其中.
【答案】
【解析】
【分析】
先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.
【详解】
解:
当 上式
【点睛】
本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键.
46.先化简,再求值:,其中.
【答案】,
【解析】
【分析】
首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a的值可得答案.
【详解】
解:原式,
,
.
当时,原式
【点睛】
此题主要考查了分式的化简求值以及分母有理化,关键是熟练掌握分式的减法和除法计算法则.
47.先化简,再求值:÷,其中x=+1,y=﹣1.
【答案】化简结果为;求值结果为2﹣.
【解析】
【分析】
根据分式四则运算顺序和运算法则对原式进行化简÷,得到最简形式后,再将x=+1、y=﹣1代入求值即可.
【详解】
解:÷
=÷
=×
=
当x=+1,y=﹣1时
原式==2﹣.
【点睛】
本题考查分式的混合运算,掌握计算法则,依据运算顺序进行计算是得出正确答案的关键.
48.先化简,再求值:,其中
【答案】;时,原式=.
【解析】
【分析】
先利用分式的运算法则化简,然后代入计算即可.
【详解】
解:
时,原式=
【点睛】
本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.
49.先化简,再求值:,其中.
【答案】,1
【解析】
【分析】
先根据分式的混合运算步骤进行化简,然后代入求值即可.
【详解】
解:
当时,原式
【点睛】
此题主要考查分式的化简求值,熟练掌握分式混合运算法则是解题关键.
50.先化简,再求值:,其中.
【答案】,
【解析】
【分析】
先将括号中的两个分式分别进行约分,然后合并后再算括号外的除法,化简后的结果再将代入即可得出答案.
【详解】
解:原式
将代入得:.
【点睛】
本题考查分式的混合运算,遇到分子分母都能因式分解的,可以先把分子分母进行因式分解,将分式进行约分化简之后再进行通分,然后再合并,合并的时候分子如果是多项的话注意符号;求值的时候最后的结果必须是最简的形式.
题型三 方程应用 类型三 二次方程(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型三 方程应用 类型三 二次方程(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型三方程应用类型三二次方程专题训练原卷版docx、题型三方程应用类型三二次方程专题训练解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
题型三 方程应用 类型二 分式方程(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型三 方程应用 类型二 分式方程(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型三方程应用类型二分式方程专题训练原卷版docx、题型三方程应用类型二分式方程专题训练解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
题型二 规律探索 类型一 数式规律(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型二 规律探索 类型一 数式规律(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型二规律探索类型一数式规律专题训练原卷版docx、题型二规律探索类型一数式规律专题训练解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。