人教版八年级下册17.1 勾股定理第1课时导学案
展开一、知识回顾
1.网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?
方法1:补形法(把以斜边为边长的正方形补成各
边都在网格线上的正方形):
左图:Sc=__________________________;
右图:Sc=__________________________.
方法2:分割法(把以斜边为边长的正方形分割成
易求出面积的三角形和四边形):
左图:Sc=__________________________;
右图:Sc=__________________________.
探究点1:勾股定理的认识及验证
想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?
2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?
3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)
4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?
思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?
猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.
活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.
证法 利用我国汉代数学家赵爽的“赵爽弦图”
证明:∵S大正方形=________,
S小正方形=________,
S大正方形=___·S三角形+S小正方形,
∴________=________+__________.
要点归纳:
勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
公式变形:
探究点2:利用勾股定理进行计算
典例精析
例1如图,在Rt△ABC中, ∠C=90°.
若a=b=5,求c;
若a=1,c=2,求b.
变式题1 在Rt△ABC中, ∠C=90°.
若a:b=1:2 ,c=5,求a;
若b=15,∠A=30°,求a,c.
方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.
变式题2 在Rt△ABC中,AB=4,AC=3,求BC的长.
方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.
例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.
方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.
针对训练
求下列图中未知数x、y的值:
二、课堂小结
内 容
勾股定理
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
注 意
1.在直角三角形中
2.看清哪个角是直角
3.已知两边没有指明是直角边还是斜边时一定要分类讨论
初中数学人教版八年级下册17.1 勾股定理第2课时学案设计: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t4/?tag_id=42" target="_blank">17.1 勾股定理第2课时学案设计</a>,共4页。学案主要包含了知识回顾,课堂小结等内容,欢迎下载使用。
初中数学17.1 勾股定理第1课时导学案: 这是一份初中数学17.1 勾股定理第1课时导学案,共6页。学案主要包含了知识回顾,课堂小结等内容,欢迎下载使用。
初中数学人教版八年级下册17.1 勾股定理学案设计: 这是一份初中数学人教版八年级下册17.1 勾股定理学案设计,共15页。学案主要包含了变式延伸,参考答案等内容,欢迎下载使用。