专题14 动点在四边形中的分类讨论(基础训练)-中考数学重难点专项突破(全国通用)
展开动点问题是中考中非常重要的一类问题,也是中考中的热点问题。动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。
四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。
一、解题基本思路
解决动点问题的思路,要注意以下几点:[来源:学.科.网]
1、设出未知数
动点问题一般都是求点的运动时间,通常设运动时间为t
2、动点的运动路径就是线段长度
题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。而2t也就是这个点所运动的线段长。进而能表示其他相关线段的长度。
所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。
3、 方程思想求出时间
动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。
4、难点是找等量关系
这种题的难点是找到等量关系。这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。
5、注意分类讨论
因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。
【精典例题】
1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;
(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.
A
B
D
C
P
Q
M
N
【解析】(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.
①当点P与点N重合时,
(舍去).
因为BQ+CM=,此时点Q与点M不重合.所以符合题意.
②当点Q与点M重合时,
.此时,不符合题意.故点Q与点M不能重合.
所以所求x的值为.
(2)由(1)知,点Q 只能在点M的左侧,
①当点P在点N的左侧时,由,解得.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,由, 解得.
当x=4时四边形NQMP是平行四边形.所以当时,以P,Q,M,N为顶点的四边形是平行四边形.
(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形, 则点F一定在点N的右侧,且PE=NF,
即.解得.
由于当x=4时, 以P,Q,M,N为顶点的四边形是平行四边形,所以,以P,Q,M,N为顶点的四边形不能为等腰梯形
2、如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.
图1
思路点拨
1.把△ACG分割成以GE为公共底边的两个三角形,高的和等于AD.
2.用含有t的式子把图形中能够表示的线段和点的坐标都表示出来.
3.构造以C、Q、E、H为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在.
满分解答
(1)A(1, 4).因为抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,[来源:学&科&网]
代入点C(3, 0),可得a=-1.
所以抛物线的解析式为y=-(x-1)2+4=-x2+2x+3.
(2)因为PE//BC,所以.因此.
所以点E的横坐标为.
将代入抛物线的解析式,y=-(x-1)2+4=.
所以点G的纵坐标为.于是得到.
因此.
所以当t=1时,△ACG面积的最大值为1.
(3)或.
考点伸展
第(3)题的解题思路是这样的:
因为FE//QC,FE=QC,所以四边形FECQ是平行四边形.再构造点F关于PE轴对称的点H′,那么四边形EH′CQ也是平行四边形.
再根据FQ=CQ列关于t的方程,检验四边形FECQ是否为菱形,根据EQ=CQ列关于t的方程,检验四边形EH′CQ是否为菱形.
,,,.
如图2,当FQ=CQ时,FQ2=CQ2,因此.
整理,得.解得,(舍去).
如图3,当EQ=CQ时,EQ2=CQ2,因此.
整理,得..所以,(舍去).
图2 图3
3、如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=_______,PD=_______;
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.
图1 图2
思路点拨
1.菱形PDBQ必须符合两个条件,点P在∠ABC的平分线上,PQ//AB.先求出点P运动的时间t,再根据PQ//AB,对应线段成比例求CQ的长,从而求出点Q的速度.
2.探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径.
满分解答
(1)QB=8-2t,PD=.
(2)如图3,作∠ABC的平分线交CA于P,过点P作PQ//AB交BC于Q,那么四边形PDBQ是菱形.
图3
过点P作PE⊥AB,垂足为E,那么BE=BC=8.
在Rt△ABC中,AC=6,BC=8,所以AB=10.
在Rt△APE中,,所以.
当PQ//AB时,,即.解得.
所以点Q的运动速度为.
(3)以C为原点建立直角坐标系.
如图4,当t=0时,PQ的中点就是AC的中点E(3,0).
如图5,当t=4时,PQ的中点就是PB的中点F(1,4).
直线EF的解析式是y=-2x+6.
如图6,PQ的中点M的坐标可以表示为(,t).经验证,点M(,t)在直线EF上.
所以PQ的中点M的运动路径长就是线段EF的长,EF=.
图4 图5 图6
考点伸展
第(3)题求点M的运动路径还有一种通用的方法是设二次函数:
当t=2时,PQ的中点为(2,2).
设点M的运动路径的解析式为y=ax2+bx+c,代入E(3,0)、F(1,4)和(2,2),
得 解得a=0,b=-2,c=6.
所以点M的运动路径的解析式为y=-2x+6.
4、如图1,在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);
(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为 EQ \F(5, 4 ) ,求a的值;
(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
图1 备用图
思路点拨
1.过点E作x轴的垂线交AD于F,那么△AEF与△CEF是共底的两个三角形.
2.以AD为分类标准讨论矩形,当AD为边时,AD与QP平行且相等,对角线AP=QD;当AD为对角线时,AD与PQ互相平分且相等.
满分解答
(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).
由CD=4AC,得xD=4.所以D(4, 5a).
由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.
(2)如图1,过点E作x轴的垂线交AD于F.
设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=yE-yF=ax2-3ax-4a.
由S△ACE=S△AEF-S△CEF=
===,
得△ACE的面积的最大值为.解方程,得.
(3)已知A(-1, 0)、D(4, 5a),xP=1,以AD为分类标准,分两种情况讨论:
①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.
由xD-xA=xP-xQ,得xQ=-4.
当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).
由yD-yA=yP-yQ,得yP=26a.所以P(1, 26a).
由AP2=QD2,得22+(26a)2=82+(16a)2.
整理,得7a2=1.所以.此时P.
②如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.
由xD+xA=xP+xQ,得xQ=2.所以Q(2,-3a).
由yD+yA=yP+yQ,得yP=8a.所以P(1, 8a).
由AD2=PQ2,得52+(5a)2=12+(11a)2.
整理,得4a2=1.所以.此时P.
图1 图2 图3
考点伸展
第(3)题也可以这样解.设P(1,n).
①如图2,当AD时矩形的边时,∠QPD=90°,所以,即.
解得.所以P.所以Q.
将Q代入y=a(x+1)(x-3),得.所以.
②如图3,当AD为矩形的对角线时,先求得Q(2,-3a).
由∠AQD=90°,得,即.解得.
5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.
(1)求抛物线C的表达式;
(2)求点M的坐标;
(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?
图1
思路点拨
1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.
2.平行四边形的面积为16,底边MN=4,那么高NN′=4.
3.M′N′=4分两种情况:点M′在点N′的上方和下方.
4.NN′=4分两种情况:点N′在点N的右侧和左侧.
满分解答
(1)将A(-3,0)、B(0, 3)分别代入y=-x2+bx+c,得
解得b=-2,c=3.
所以抛物线C的表达式为y=-x2-2x+3.
(2)由y=-x2-2x+3=-(x+1)2+4,得顶点M的坐标为(-1,4).
(3)抛物线在平移过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.
因为平行四边形的面积为16,所以MN边对应的高NN′=4.
那么以点M、N、M′、N′为顶点的平行四边形有4种情况:
抛物线C直接向右平移4个单位得到平行四边形MNN′M′(如图2);
抛物线C直接向左平移4个单位得到平行四边形MNN′M′(如图2);
抛物线C先向右平移4个单位,再向下平移8个单位得到平行四边形MNM′N′(如图3);
抛物线C先向左平移4个单位,再向下平移8个单位得到平行四边形MNM′N′(如图3).
图2 图3
考点伸展
本题的抛物线C向右平移m个单位,两条抛物线的交点为D,那么△MM′D的面积S关于m有怎样的函数关系?
如图4,△MM′D是等腰三角形,由M(-1,4)、M′(-1+m, 4),可得点D的横坐标为.
将代入y=-(x+1)2+4,得.所以DH=.
所以S=.
图4
专题01 截长补短模型证明问题(基础训练)-中考数学重难点专项突破(全国通用): 这是一份专题01 截长补短模型证明问题(基础训练)-中考数学重难点专项突破(全国通用),文件包含专题01截长补短模型证明问题基础训练原卷版docx、专题01截长补短模型证明问题基础训练解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
最新中考数学难点突破与经典模型精讲练 专题27 四边形中由动点引起的分类讨论问题 (全国通用): 这是一份最新中考数学难点突破与经典模型精讲练 专题27 四边形中由动点引起的分类讨论问题 (全国通用),文件包含专题27四边形中由动点引起的分类讨论问题原卷版docx、专题27四边形中由动点引起的分类讨论问题解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
最新中考数学难点突破与经典模型精讲练 专题23 数轴上由动点引起的分类讨论问题 (全国通用): 这是一份最新中考数学难点突破与经典模型精讲练 专题23 数轴上由动点引起的分类讨论问题 (全国通用),文件包含专题23数轴上由动点引起的分类讨论问题原卷版docx、专题23数轴上由动点引起的分类讨论问题解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。