专题48 三角形中的平移综合问题-中考数学重难点专项突破(全国通用)
展开(1)将△ABC沿x轴向左移一个单位长度,向上移2个单位长度,
则A1的坐标为 ,B1的坐标为 ,C1的坐标为 .
(2)若△ABC与△A2B2C2关于x轴对称,则A2的坐标为 ,
B2的坐标为 ,C2的坐标为 .
2、如图,在平面直角坐标系中,△ABC顶点A的坐标是(1,3),顶点B的坐标是(﹣2,4),顶点C的坐标是(﹣2,﹣1),现在将△ABC平移得到△A′B′C′,平移后点B和点A刚好重合.其中点A′,B′,C′分别为点A,B,C的对应点.
(1)在图中画出△A′B′C′;
(2)直接写出A′、C′点的坐标;
(3)若AB边上有一点P,P点的坐标是(a,b),平移后的对应点是P′,请直接写出P′点的坐标.
3、如图所示,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1)
(1)将△ABC沿x轴正方形平移3个单位长度得到△A1B1C1,画出△A1B1C1,点B1坐标为 ;
(2)将△A1B1C1沿y轴正方向平移4个单位长度得到△A2B2C2,画出△A2B2C2,点C2的坐标为 ;
(3)点P(a,b)是△ABC内一点,经过上述2次平移后对应点坐标为 ;△A2B2C2的面积为 .
4、现有一副三角板,如图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°;图③中,将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动(移动开始时点D与点A重合).
(1)△DEF在移动的过程中,若D、E两点始终在AC边上,
①F、C两点间的距离逐渐 ;连接FC,∠FCE的度数逐渐 .(填“不变”、“变大”或“变小”)
②∠FCE与∠CFE度数之和是否为定值,请加以说明;
(2)△DEF在移动的过程中,如果D、E两点在AC的延长线上,那么∠FCE与∠CFE之间又有怎样的数量关系,请直接写出结论;
(3)能否将△DEF移动至某位置,使F、C的连线与BC垂直?求出∠CFE的度数.
5、操作题:
(1)如图甲所示,已知△ABC,用三角尺和量角器作△ABC的:①中线AD;②角平分线BE;③高CH.
(2)如图乙在方格中平移△ABC,
①使点A移到点M
使点A移到点N
②分别画出两次平移后的三角形.
6、按要求画图.
(1)在图1中分别画出点A、点B到直线CD的垂线段AE、BF
(2)如图2,已知三角形ABC,点D为点A的对应点,过点D作三角形ABC平移后的三角形DEF.
7、在边长为1个单位长度的正方形格纸上建立如图的平面直角坐标系,三角形ABC的顶点都在格点上.
(1)请直接写出三角形ABC各点的坐标.
(2)求出三角形ABC的面积是 .
(3)若把三角形ABC向上平移3个单位,再向右平移2个单位得到三角形A1B1C1,在图中画出三角形A1B1C1.
8、如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为 .
9、在Rt△ABC中,∠BAC=90°,∠B=30°,线段AD是BC边上的中线,如图1,将△ADC沿直线BC平移,使点D与点C重合,得到△FCE,如图2,再将△FCE绕点C顺时针旋转,设旋转角为α(0°<α≤90°),连接AF,DE.
(1)在旋转过程中,当∠ACE=150°时,求旋转角α的度数;
(2)探究旋转过程中四边形ADEF能形成哪些特殊四边形?请说明理由.
10、如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上的点F处.
(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?
(2)如果AM=1,sin∠DMF=,求AB的长.
11、如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.
(1)求证:四边形BFGH是正方形;
(2)求证:ED平分∠CEI;
(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为 .
12、如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,将△ABC绕点C逆时针旋转90°后得到△A1B1C,再将△A1B1C沿CB向右平移,使点B2恰好落在斜边AB上,A2B2与AC相交于点D.
(1)判断四边形A1A2B2B1的形状,并说明理由;
(2)求A2C的长度.
13、在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.连接QP并延长,分别交AB、CD于点M,N.
(1)如图1,求证:△BCP≌△DCQ;
(2)如图2,已知PM=QN;若MN的最小值为,求菱形ABCD的面积.
15、四边形ABCD是正方形,PA是过正方形顶点A的直线,作DE⊥PA于E,将射线DE绕点D逆时针旋转45°与直线PA交于点F.
(1)如图1,当∠PAD=45°时,点F恰好与点A重合,则的值为 ;
(2)如图2,若45°<∠PAD<90°,连接BF、BD,试求的值,并说明理由.
16、如图,在△ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边△CDE.
(1)如图1,若∠CDB=45°,AB=6,求等边△CDE的边长;
(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.
①求证:CF⊥DF;
②如图3,将△CFD沿CF翻折得△CFD′,连接BD′,直接写出的最小值.
17、(1)观察与发现:小明将三角形纸片ABC(AC>AB)沿过点A的直线折叠,使得AB落在AC边上,折痕为AD,展开纸片(如图1);在第一次的折叠基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图2).小明认为△AEF是等腰三角形,你同意他的结论吗?请说明理由:
(2)模型与运用:
如图3,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC交AC于点E,过点C作CD⊥BD,交BE的延长线于点D.若CD=4,求△BCE的面积.
18、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.
[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△ ,可推证△CEF是 三角形,从而求得∠DCE= °.
[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.
[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.
专题33 圆中的存在性综合问题-中考数学重难点专项突破(全国通用): 这是一份专题33 圆中的存在性综合问题-中考数学重难点专项突破(全国通用),文件包含专题33圆中的存在性综合问题原卷版docx、专题33圆中的存在性综合问题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题28 三角形的存在性综合问题-中考数学重难点专项突破(全国通用): 这是一份专题28 三角形的存在性综合问题-中考数学重难点专项突破(全国通用),文件包含专题28三角形的存在性综合问题原卷版docx、专题28三角形的存在性综合问题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题28 三角形的存在性综合问题-2024年中考数学重难点专项突破(全国通用): 这是一份专题28 三角形的存在性综合问题-2024年中考数学重难点专项突破(全国通用),文件包含专题28三角形的存在性综合问题原卷版docx、专题28三角形的存在性综合问题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。