所属成套资源:备战2024年高考数学大一轮复习核心考点精讲精练(新高考专用)
专题4.3 应用导数研究函数的极值、最值(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用)
展开
这是一份专题4.3 应用导数研究函数的极值、最值(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题43应用导数研究函数的极值最值原卷版docx、专题43应用导数研究函数的极值最值解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
【核心素养】
1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象等相结合,且有综合化更强的趋势,凸显数学抽象、数学运算、逻辑推理的核心素养.
2.与函数的图象、曲线方程、导数的几何意义相结合,凸显数学运算、直观想象、逻辑推理的核心素养.
知识点一
函数的极值
(1)函数的极小值:
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)函数的极大值:
函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
知识点二
函数的最值
(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.
常考题型剖析
题型一:函数极值的辨析
【典例分析】
例1-1.(2023·全国·统考高考真题)已知函数的定义域为,,则( ).
A.B.
C.是偶函数D.为的极小值点
例1-2.(2022·全国·统考高考真题)已知函数,则( )
A.有两个极值点B.有三个零点
C.点是曲线的对称中心D.直线是曲线的切线
【规律方法】
1.函数极值的辨析问题,特别是有关给出图象研究函数性质的题目,要分清给的是f(x)的图象还是f ′(x)的图象,若给的是f(x)的图象,应先找出f(x)的单调区间及极(最)值点,如果给的是f ′(x)的图象,应先找出f ′(x)的正负区间及由正变负还是由负变正,然后结合题目特点分析求解.
2.f(x)在x=x0处有极值时,一定有f ′(x0)=0,f(x0)可能为极大值,也可能为极小值,应检验f(x)在x=x0两侧的符号后才可下结论;若f ′(x0)=0,则f(x)未必在x=x0处取得极值,只有确认x1
相关试卷
这是一份专题4.4 导数与不等式(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题44导数与不等式原卷版docx、专题44导数与不等式解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
这是一份专题3.2 函数的单调性与最值(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题32函数的单调性与最值原卷版docx、专题32函数的单调性与最值解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份专题4.3 应用导数研究函数的极值、最值-2024年高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题43应用导数研究函数的极值最值原卷版docx、专题43应用导数研究函数的极值最值解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。