终身会员
搜索
    上传资料 赚现金
    云南省腾冲市民族中学2023-2024学年高一下学期开学摸底考试数学试卷(A卷)
    立即下载
    加入资料篮
    云南省腾冲市民族中学2023-2024学年高一下学期开学摸底考试数学试卷(A卷)01
    云南省腾冲市民族中学2023-2024学年高一下学期开学摸底考试数学试卷(A卷)02
    云南省腾冲市民族中学2023-2024学年高一下学期开学摸底考试数学试卷(A卷)03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省腾冲市民族中学2023-2024学年高一下学期开学摸底考试数学试卷(A卷)

    展开
    这是一份云南省腾冲市民族中学2023-2024学年高一下学期开学摸底考试数学试卷(A卷),共11页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    1.已知集合M={x|−2A. {x|x≥−1}B. {x|x≥4}C. {x|x≤−2}D. {x|−1≤x≤4}
    2.已知函数f(x)=lg3(x+3),x>02−x+2,x≤0,则f(f(−2))=( )
    A. 1B. 2C. 3D. 4
    3.若函数f(x)=x3+2x2+3x,x≥0x3+ax2+bx,x<0为奇函数,则实数a,b的值分别为( )
    A. 2,3B. −2,3C. −2,−3D. 2,−3
    4.函数y=2x−x2的图象大致是( )
    A. B.
    C. D.
    5.已知平面向量a=( 3,−1),|b|=4,且(a−2b)⊥a,则|a−b|=( )
    A. 2B. 3C. 4D. 5
    6.设a=lg37,b=21.3,c=0.70.3,则a,b,c的大小关系为( )
    A. c7.函数f(x)=3x−lnx的零点所在的区间为( )
    A. (0,1)B. (1,2)C. (2,3)D. (3,4)
    8.函数f(x)=sin(2x−π4)−2 2sin2x的最小正周期是( )
    A. π2B. πC. 2πD. π4
    二、多选题:本题共4小题,共16分。在每小题给出的选项中,有多项符合题目要求。
    9.下列叙述中正确的是( )
    A. {0}⊆Z
    B. 若集合A,B是全集U的两个子集,且A⊆B,则B∩(∁UA)=⌀
    C. 命题“∀x∈Z,x2>0”的否定是“∃x∈Z,x2≤0”
    D. 命题“∀x∈Z,x2>0”的否定是“∀x∈Z,x2<0”
    10.已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且f(x),g(x)在(−∞,0]单调递减,则( )
    A. f(f(1))C. g(f(1))11.已知函数f(x)=lg2(2x+8x)−2x,以下判断正确的是( )
    A. f(x)是增函数B. f(x)有最小值C. f(x)是奇函数D. f(x)是偶函数
    12.关于三角函数f(x)=2sin(2x+π3)−1的性质,下列说法正确的是( )
    A. 函数f(x)的最小正周期为πB. 函数f(x)的一个对称中心为(π3,0)
    C. 函数f(x)的图象关于x=11π12对称D. 函数f(x)在区间(−π3,0)上单调
    三、填空题:本题共4小题,每小题4分,共16分。
    13.设单位向量a,b的夹角为60°,则(2a+b)⋅b= ______.
    14.命题“∃x∈(−1,2),2x2+a=0”是真命题,则实数a的取值范围是______.
    15.已知幂函数f(x)=(m−1)xm的图象过点M(2,a),则a= ______.
    16.若fx=sinπx6x≤01−2xx>0,则f[f(3)]= .
    四、解答题:本题共4小题,共36分。解答应写出文字说明,证明过程或演算步骤。
    17.(本小题8分)
    定义在R上的奇函数f(x)满足:当x>0时,f(x)=2x−1+1.
    (1)求f(x)的解析式;
    (2)求不等式|f(x)|≥2的解集.
    18.(本小题8分)
    已知m∈R,命题p:m2−m−6<0命题q:函数f(x)=2x2−mx+1在(0,+∞)上存在零点.
    (1)若p是真命题,求m的取值范围;
    (2)若p,q中有一个为真命题,另一个为假命题,求m的取值范围.
    19.(本小题10分)
    已知向量a=(1,2x),b=(x,3),c=(−2,0).
    (1)若(a+2b)//(2a−c),求实数x的值;
    (2)若(a+2b)⊥(2a−c),求实数x的值.
    20.(本小题10分)
    已知f(α)=sin(π2+α)cs(π+α)sin(−α)sin(3π2−α)cs(2π−α)tan(π−α).
    (1)化简f(α);
    (2)若f(π3−α)=13,求cs2(π6+α)+cs(2π3+α)的值.
    答案和解析
    1.【答案】B
    【解析】解:因为M={x|−2所以∁RM={x|x≤−2或x≥4},
    所以N∩(∁RM)={x|x≥4}.
    故选:B.
    利用补集和交集的定义求解即可.
    本题主要考查集合的交集和补集的运算,属于基础题.
    2.【答案】B
    【解析】解:由题意f(x)=lg3(x+3),x>02−x+2,x≤0,
    所以f(−2)=2−(−2)+2=6,
    故f(f(−2))=f(6)=lg3(6+3)=2.
    故选:B.
    根据分段函数的解析式,先计算f(−2)的值,再求得f(f(−2))的值即可.
    本题主要考查了函数值的求解,属于基础题.
    3.【答案】B
    【解析】解:∵f(x)为奇函数,
    ∴设x<0,−x>0,则f(−x)=−x3+2x2−3x=−f(x),
    ∴x<0时,f(x)=x3−2x2+3x=x3+ax2+bx,
    ∴a=−2,b=3.
    故选:B.
    根据f(x)的解析式以及f(x)为奇函数,即可设x<0,从而得出f(−x)=−x3+2x2−3x=−f(x),这样即可得出x3−2x2+3x=x3+ax2+bx,这样即可求出a,b的值.
    本题考查奇函数的定义,考查函数解析式的求法,属于基础题.
    4.【答案】A
    【解析】解:分别画出函数f(x)=2x(红色曲线)和g(x)=x2(蓝色曲线)的图象,如图所示,
    由图可知,f(x)与g(x)有3个交点,
    所以y=2x−x2=0,有3个解,
    即函数y=2x−x2的图象与x轴由三个交点,故排除B,C,
    当x=−3时,y=2−3−(−3)2<0,故排除D
    故选:A.
    根据函数图象的交点的个数就是方程的解的个数,也就是y=0,图象与x轴的交点的个数,排除BC,再取特殊值,排除D
    本题主要考查了函数图象的问题,关键是理解函数图象的交点和方程的解得个数的关系,排除是解决选择题的常用方法,属于中档题
    5.【答案】C
    【解析】【分析】
    由向量的模的定义和向量垂直的性质,求得a⋅b,再由向量的平方即为模的平方,化简计算可得所求值.
    本题考查向量数量积的性质和运用,考查方程思想和运算能力.
    【解答】
    解:由平面向量a=( 3,−1),可得|a|= 3+1=2,
    由(a−2b)⊥a,可得a⋅(a−2b)=0,
    即a2=2a⋅b=4,
    则a⋅b=2,
    |a−b|= (a−b)2= a2−2a⋅b+b2= 4−2×2+16=4,
    故选:C.
    6.【答案】B
    【解析】解:因为1=lg33因为21.3>21=2,所以b>a,
    又因为0.70.3<0.70=1,所以c所以c故选:B.
    根据指数函数和对数函数的单调性进行判断即可.
    本题主要考查数值大小的比较,属于基础题.
    7.【答案】C
    【解析】解:依题意,函数f(x)=3x−lnx的定义域为(0,+∞),
    而y=3x在(0,+∞)为单调递减函数,y=−lnx在(0,+∞)为单调递减函数,
    因为e3>4,所以e32>2,即e322>1,
    所以f(2)=32−ln2=lne32−ln2=lne322>0,f(3)=33−ln3=1−ln3=lne−ln3=lne3所以f(2)⋅f(3)<0,
    所以由零点存在性定理可知,
    函数f(x)=3x−lnx在区间(2,3)有零点.
    故选:C.
    根据零点存在性定理f(a)f(b)<0,f(x)=3x−lnx在(0,+∞)为单调递减函数,结合f(2)>0,f(3)<0即可求解.
    本题考查了函数零点的判定定理,考查运算求解能力,属于中档题.
    8.【答案】B
    【解析】解:∵f(x)=sin(2x−π4)−2 2sin2x
    = 22sin2x− 22cs2x− 2(1−cs2x)
    = 22sin2x+ 22cs2x− 2
    =sin(2x+π4)− 2,
    ∴其最小正周期T=2π2=π,
    故选:B.
    利用两角和与差的正弦及二倍角的余弦可得f(x)= 22sin2x− 22cs2x− 2(1−cs2x),再利用辅助角公式可得f(x)=sin(2x+π4)− 2,于是可求其最小正周期.
    本题考查两角和与差的正弦及二倍角的余弦、辅助角公式的应用,考查三角函数的周期性及其求法,属于中档题.
    9.【答案】AC
    【解析】解:选项A,∵0是整数,∴{0}⊆Z,正确;
    选项B,当U={1,2,3},A={1},B={1,2}时,∁UA={2,3},B∩(∁UA)≠⌀,错误;
    选项C,命题“∀x∈Z,x2>0”的否定是“∃x∈Z,x2≤0”,正确;
    选项D,命题“∀x∈Z,x2>0”的否定是“∃x∈Z,x2≤0”,错误.
    故选:AC.
    分别根据集合间的关系,集合的运算法则以及含有一个量词的命题的否定求解即可.
    本题考查命题真假的判断,属于基础题.
    10.【答案】BD
    【解析】解:f(x)是定义在R上的偶函数,f(x)在(−∞,0]单调递减,所以f(x)在(0,+∞)上是增函数,
    g(x)是定义在R上的奇函数,g(x)在(−∞,0]单调递减,所以g(x)在(0,+∞)上是减函数,
    所以g(x)在R上是减函数,
    所以f(1)0>g(1)>g(2),可得f(g(1))g(f(1))>g(f(2)),所以C不正确;
    g(g(1))故选:BD.
    利用函数的单调性以及函数的奇偶性,判断选项的正误即可.
    本题考查函数的奇偶性以及函数的单调性的应用,是中档题.
    11.【答案】BD
    【解析】【分析】
    本题考查了对数的运算,重点考查了对数函数的性质,属于中档题.
    先由对数的运算化简,再结合对数函数的性质逐一判断即可得解.
    【解答】
    解:函数f(x)=lg2(2x+8x)−2x,
    则f(x)=lg2(2x+8x)−lg222x,
    则f(x)=lg2(2x+12x),
    则f(x)=f(−x),即函数为偶函数,即选项D正确,选项C错误;
    由2x+12x≥2 2x×12x=2,当且仅当x=0时取等号,即函数f(x)有最小值1,即选项B正确;
    由函数f(x)为偶函数,且f(x)不是常数函数,所以f(x)一定不是单调递增函数,即选项A错误,
    故选BD.
    12.【答案】AD
    【解析】解:对于A选项,函数f(x)的最小正周期为T=2π2=π,A对;
    对干B选项;因为f(π3)=sin(2×π3+π3)−1=sinπ−1=−1,
    所以函数f(x)的一个对称中心为(π3,−1),B错;
    对于C选项,因为f(11π12)=sin(2×11π12+π3)−1=sin13π6−1=−12,
    则f(11π12)≠f(x)max且f(11π12)≠f(x)min,
    故函数f(x)的图象不关于直线x=11π12对称,C错;
    对于D选项,当−π3又因为正弦函数在(−π3,π3)上单调递增,
    所以函数f(x)在(−π3,0)上单调递增,D对.
    故选:AD.
    利用正弦型函数的周期公式可判断A选项;利用正弦型函数的对称性可判断BC选项,利用正弦型函数的单调性可判断D选项.
    本题考查三角函数的性质,属于中档题.
    13.【答案】2
    【解析】解:由题意,|a|=|b|=1,cs=cs60°=12,
    所以(2a+b)⋅b=2a⋅b+b2=2×1×1×12+1=2.
    故答案为:2.
    根据向量的模及夹角直接进行数量积运算即可.
    本题考查平面向量数量积运算,属基础题.
    14.【答案】(−8,0]
    【解析】解:∵∃x∈(−1,2),2x2+a=0是真命题,
    ∴a=−2x2,x∈(−1,2)成立,
    当x∈(−1,2)时,y=−2x2∈(−8,0],
    ∴实数a的取值范围是(−8,0].
    故答案为:(−8,0].
    根据特称命题的性质得到a=−2x2,x∈(−1,2)成立,再利用二次函数求值域即可.
    本题主要考查特称命题的应用,将条件转化为求函数的值域是解决本题的关键.
    15.【答案】4
    【解析】解:由函数f(x)=(m−1)xm为幂函数,得m−1=0,即m=2,
    所以f(x)=x2,
    又函数f(x)过点M(2,a),
    则a=f(2)=22=4.
    故答案为:4.
    根据幂函数的定义可得m=2,再根据函数图象过点M(2,a),可得a.
    本题主要考查幂函数的概念,属于基础题.
    16.【答案】−12
    【解析】【分析】
    本题主要考查分段函数求函数值,本题要注意两点,一是要根据定义域选择好解析式,二是当多重求值时,要从内到外求解.
    先求出f(3)来,再求f[f(3)],一定要注意定义域选择好解析式.
    【解答】
    解:f(3)=1−2×3=−5,
    f[f(3)]=f(−5)=sin(−5π6)=−sin5π6=−12,
    故答案为−12.
    17.【答案】解:(1)当x<0时,−x>0,f(−x)=2−x−1+1.
    因为f(x)是定义在R上的奇函数,所以f(x)=−f(−x)=−2−x−1−1.
    f(x)=2x−1+1,x>0,0,x=0,−2−x−1−1,x<0.
    (2)当x>0时,f(x)=2x−1+1>0,|f(x)|≥2,即f(x)≥2,
    即2x−1+1≥2,解得x≥1.
    当x<0时,f(x)=−2−x−1−1<0,|f(x)|≥2,即−f(x)≥2,
    即2−x−1+1≥2,解得x≤−1.
    故不等式|f(x)|≥2的解集是(−∞,−1]∪[1,+∞).
    【解析】(1)利用函数的奇偶性求出解析式即可.
    (2)对分段函数进行讨论,去掉绝对值后解不等式即可.
    本题主要考查了函数的奇偶性在函数解析式求解中的应用,还考查了函数的奇偶性在不等式求解中的应用,属于中档题.
    18.【答案】解:(1)因为p是真命题,所以m2−m−6<0成立,解得−2所以m的取值范围是{m|−2(2)若q为真命题,则函数f(x)=2x2−mx+1在(0,+∞)上存在零点,
    则方程2x2−mx+1=0在(0,+∞)上有解,
    因为该方程在有解时两解同号,
    所以方程2x2−mx+1=0在(0,+∞)上有两个正根,
    则m2−8≥0m>0,解得m≥2 2,
    若p为真命题,q为假命题,得−2若p为假命题,q为真命题,得m≥3,
    所以m的取值范围为{m|−2【解析】(1)p是真命题即以m2−m−6<0成立,解此不等式即可;(2)分p为真命题,q为假命题和p为假命题,q为真命题两种情况分别求解即可.
    本题考查了命题的真假,以及二次不等式的解法和二次方程根的分布问题,属于中档题.
    19.【答案】解:a=(1,2x),b=(x,3),c=(−2,0),
    则a+2b=(1+2x,2x+6),2a−c=(4,4x),
    (1)(a+2b)//(2a−c),
    则(1+2x)⋅4x=4(2x+6),解得x=2或x=−32;
    (2)(a+2b)⊥(2a−c),
    则4(1+2x)+4x(2x+6)=0,解得x=−4+ 142或x=−4− 142.
    【解析】(1)根据已知条件,结合向量共线的性质,即可求解;
    (2)根据已知条件,结合向量垂直的性质,即可求解.
    本题主要考查平面向量垂直、共线的性质,属于基础题.
    20.【答案】解:(1)由题意得,f(α)=csα⋅(−csα)⋅(−sinα)−csα⋅csα⋅(−tanα)=csα;
    (2)若f(π3−α)=13,则cs(π3−α)=13,
    ∴cs2(π6+α)=cs2π2−(π3−α)=sin2(π3−α)=1−cs2(π3−α)=1−19=89,
    cs(2π3+α)=csπ−(π3−α)=−cs(π3−α)=−13,
    则cs2(π6+α)+cs(2π3+α)=89−13=59.
    【解析】本题考查利用诱导公式化简求值,以及由一个三角函数值求其他三角函数值,是基础题.
    (1)直接利用三角函数的诱导公式化简;
    (2)利用诱导公式及同角三角函数的基本关系化简求值.
    相关试卷

    2022-2023学年云南省保山市腾冲八中高二(下)开学数学试卷(含解析): 这是一份2022-2023学年云南省保山市腾冲八中高二(下)开学数学试卷(含解析),共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年云南省保山市腾冲民族中学高一(下)开学数学试卷(A卷)(含解析): 这是一份2023-2024学年云南省保山市腾冲民族中学高一(下)开学数学试卷(A卷)(含解析),共11页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年云南省红河重点中学高一(下)开学数学试卷(含解析): 这是一份2023-2024学年云南省红河重点中学高一(下)开学数学试卷(含解析),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map