【高频真题解析】广西省桂林市中考数学三年高频真题汇总 卷(Ⅱ)(精选)
展开
这是一份【高频真题解析】广西省桂林市中考数学三年高频真题汇总 卷(Ⅱ)(精选),共24页。试卷主要包含了一元二次方程的根为等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、代数式的意义是( )
A.a与b的平方和除c的商B.a与b的平方和除以c的商
C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
2、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
A.B.C.D.
3、下列方程中,解为的方程是( )
A.B.C.D.
4、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
A.19°B.20°C.24°D.25°
5、一元二次方程的根为( )
A.B.C.D.
6、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬B.奥C.运D.会
7、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
8、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
9、下列不等式中,是一元一次不等式的是( )
A.B.C.D.
10、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,则的值是______.
2、在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为_______.
3、如图,在中,,,,以点A为圆心,的长为半径画弧,以点B为圆心,的长为半径画弧,两弧分别交于点D、F,则图中阴影部分的面积是_________.
4、多项式3x2﹣2xy2+xyz3的次数是 ___.
5、如图,在中,,,与分别是斜边上的高和中线,那么_______度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,ABCD,,,试说明:BCDE.请补充说明过程,并在括号内填上相应的理由.
解:∵ABCD(已知),
,
又(已知),
,
,
,
BCDE .
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
(1);
(2)过点C作,交BE于点G,交AB于点M,求证:.
3、将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.
(1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.
(2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.
4、已知:如图,点A,F,C,D在同一条直线上,点B和点E在直线AD的两侧,且AF=DC,BC∥FE,∠A=∠D.求证:AB=DE.
5、解不等式(组),并把解集在数轴上表示出来.
(1)
(2)
-参考答案-
一、单选题
1、D
【分析】
(a+b)2表示a与b的和的平方,然后再表示除以c的商.
【详解】
解:代数式的意义是a与b的和的平方除以c的商,
故选:D.
【点睛】
此题主要考查了代数式的意义,关键是根据计算顺序描述.
2、D
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
【详解】
解:在△AEF和△ABC中,
,
∴△AEF≌△ABC(SAS),
∴AF=AC,∠AFE=∠C,
∴∠C=∠AFC,
∴∠EFC=∠AFE+∠AFC=2∠C.
故选:D.
【点睛】
本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
3、D
【分析】
求出选项各方程的解即可.
【详解】
A、,解得:,不符合题意.
B、,解得:,不符合题意.
C、,解得:,不符合题意.
D、,解得:,符合题意.
故选:D .
【点睛】
此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
4、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
5、C
【分析】
先移项,把方程化为 再利用直接开平方的方法解方程即可.
【详解】
解:,
即
故选C
【点睛】
本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
6、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
7、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
8、A
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
9、B
【分析】
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
【详解】
A、不等式中含有两个未知数,不符合题意;
B、符合一元一次不等式的定义,故符合题意;
C、没有未知数,不符合题意;
D、未知数的最高次数是2,不是1,故不符合题意.
故选:B
【点睛】
本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
10、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
二、填空题
1、-2
【解析】
【分析】
将的值代入原式=计算可得.
【详解】
解:=
将代入,原式==-2
故答案为:-2
【点睛】
本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
2、
【解析】
【分析】
根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:如图,
当为直角顶点时,则,
作轴,
又
,
同理可得
根据三线合一可得是的中点,则
综上所述,点C的坐标为
故答案为:
【点睛】
本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.
3、
【解析】
【分析】
根据直角三角形30度角的性质及勾股定理求出AC、BC,∠A=60°,利用扇形面积公式求出阴影面积.
【详解】
解:在中,,,,
∴AC=1,,∠A=60°,
∴图中阴影部分的面积=
=
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
=,
故答案为:.
【点睛】
此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.
4、5
【解析】
【分析】
根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数解答.
【详解】
解:多项式3x2﹣2xy2+xyz3的次数是5.
故答案为:5.
【点睛】
本题考查的是多项式的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.
5、50
【解析】
【分析】
根据直角三角形中线的性质及互为余角的性质计算.
【详解】
解:,为边上的高,
,
,是斜边上的中线,
,
,
的度数为.
故答案为:50.
【点睛】
本题主要考查了直角三角形中线的性质及互为余角的性质,解题的关键是掌握三角形中线的性质.
三、解答题
1、两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行
【分析】
由题意根据平行线的性质与判定即可补充说理过程.
【详解】
解:(已知),
(两直线平行,内错角相等),
又(已知),
(等量代换),
(已知),
,
(同旁内角互补,两直线平行).
故答案为:两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行.
【点睛】
本题考查平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、
(1)见解析
(2)见解析
【分析】
(1)由可得可得,然后再说明,即可证明结论;
(2)说明即可证明结论.
(1)
证明:∵
∴
∵,
∴∠BDC=
∴
∵,
∴∠A+∠ABC=90°,∠DCB+∠ABC=90°,
∴∠A=∠DCB
∵∠CBD=∠CBD
∴
∴.
(2)
解:∵
∴∠A=∠CBE
∵
∴∠DCB=∠CBE
∵∠AEB=∠CBE+∠BCE,∠CFM=∠CDA+∠FMD
∴∠AEB=∠CFM
∵CG⊥BE,CD⊥AB,∠CFD=∠DFB
∴∠MCF=∠FBD
∴
∴.
【点睛】
本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键.
3、
(1)见解析;
(2)能成为直角三角形,=30°或60°
【分析】
(1)由全等三角形的性质可得∠AEF=∠ACB,AE=AC,根据等腰三角形的判定与性质证明∠PEC=∠PCE,PE=PC,然后根据线段垂直平分线的判定定理即可证得结论;
(2)分∠CPN=90°和∠CNP=90°,利用旋转的性质和三角形的内角和定理求解即可.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
证明:∵两块是完全相同的且含角的直角三角板和,
∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,
∴∠AEC=∠ACE,
∴∠AEC-∠AEF=∠ACE-∠ACB,
∴∠PEC=∠PCE,
∴PE=PC,又AE=AC,
∴所在的直线是线段的垂直平分线.
(2)
解:在旋转过程中,能成为直角三角形,
由旋转的性质得:∠FAC= ,
当∠CNP=90°时,∠FNA=90°,又∠F=60°,
∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;
当∠CPN=90°时,∵∠NCP=30°,
∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,
∵∠F=60°,
∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,
综上,旋转角的的度数为30°或60°.
【点睛】
本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.
4、见解析
【分析】
证明△ABC≌△DEF即可.
【详解】
∵BC∥FE,
∴∠1 =∠2
∵AF=DC,
∴AF+FC=DC+CF.
∴AC=DF.
在△ABC和△DEF中,
∴△ABC≌△DEF(ASA) .
∴AB=DE.
【点睛】
本题考查了平行线的性质、三角形全等的判定与性质,关键是证明三角形全等.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、
(1),作图见解析
(2),作图见解析
【分析】
(1)按照解一元一次不等式的步骤解不等式即可.
(2)将一元一次不等式组看作两个一元一次不等式,得出两个解集后取公共部分即可.
(1)
原式为
去括号得
合并同类项、移向得
故不等式的解集为
数轴上解集范围如图所示
(2)
原式为
①式为
去括号得
合并同类项、移向得
化系数为1得
②式为
去分母得
合并同类项、移向得
化系数为1得
故方程组的解集为
数轴上解集范围如图所示
【点睛】
本题考查了解一元一次不等式组以及用数轴表示不等式解集,解一元一次不等式的步骤为去括号、去分母、移向、合并同类项、化系数为1.解一元一次不等式组的一般步骤,第一步:分别求出不等式组中各不等式的解集;第二步:将各不等式的解集在数轴上表示出来;第三步:在数轴上找出各不等式的解集的公共部分,这个公共部分就是不等式组的解集.用数轴表示不等式的解集时要“两定”:一定边界点,二定方向. 在定边界点时,若符号是“≤”或“≥”,边界点为实心点;若符号是“<”或“>”,边界点为空心圆圈.在定方向时,相对于边界点而言,“小于向左,大于向右”.
相关试卷
这是一份【历年真题】湖南省张家界市中考数学三年高频真题汇总 卷(Ⅲ)(精选),共23页。试卷主要包含了下列等式变形中,不正确的是等内容,欢迎下载使用。
这是一份【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了的相反数是等内容,欢迎下载使用。
这是一份【高频真题解析】2022年广西省桂林市中考数学历年真题汇总 卷(Ⅲ)(精选),共25页。试卷主要包含了正八边形每个内角度数为,下列各数中,是不等式的解的是,的相反数是等内容,欢迎下载使用。