【高频真题解析】河北省中考数学三模试题(精选)
展开
这是一份【高频真题解析】河北省中考数学三模试题(精选),共29页。试卷主要包含了下列图像中表示是的函数的有几个,下列等式变形中,不正确的是,如图,下列条件中不能判定的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75°B.70°C.65°D.55°
2、下列语句中,不正确的是( )
A.0是单项式B.多项式的次数是4
C.的系数是D.的系数和次数都是1
3、如图,直线AB与CD相交于点O,若,则等于( )
A.40°B.60°C.70°D.80°
4、下列图像中表示是的函数的有几个( )
A.1个B.2个C.3个D.4个
5、下列几何体中,截面不可能是长方形的是( )
A.长方体B.圆柱体
C.球体D.三棱柱
6、下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
7、下列等式变形中,不正确的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.若,则B.若,则
C.若,则D.若,则
8、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
A.16B.19C.24D.36
9、如图,下列条件中不能判定的是( )
A.B.C.D.
10、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直角三角形AOB的直角边OA在数轴上,AB与数轴垂直,点O与数轴原点重合,点A表示的实数是2,BA=2,以点O为圆心,OB的长为半径画弧,与数轴交于点C,则点C对应的数是_____.
2、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.
3、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在中,,,.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、如图,两个多边形的面积分别为13和22,两个阴影部分的面积分别为a,,则的值为______.
5、若关于的不等式的解集为,则的取值范围为__.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,.
(1)尺规作图:
①作边的垂直平分线交于点,交于点;
②连接,作的平分线交于点;(要求:保留作图痕迹,不写作法)
(2)在(1)所作的图中;求的度数.
解:∵垂直平分线段,
∴,(_________)(填推理依据)
∴,(__________)(填推理依据)
∵,∴,
∵,
∴__________,
∴__________,
∵平分,
∴__________.
2、如图,在中,,,,动点从点开始沿边向点以的速度移动,动点从点开始沿边向点以的速度移动.若,两点同时出发,当点到达点时,,两点同时停止移动.设点,移动时间为.
(1)若的面积为,写出关于的函数关系式,并求出面积的最大值;
(2)若,求的值.
3、如图1,在平而直角坐标系中,抛物线(、、为常数,)的图像与轴交于点、两点,与轴交于点,且抛物线的对称轴为直线.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求抛物线的解析式;
(2)在直线上方的抛物线上有一动点,过点作轴,垂足为点,交直线于点;是否存在点,使得取得最大值,若存在请求出它的最大值及点的坐标;若不存在,请说明理由;
(3)如图2,若点是抛物线上另一动点,且满足,请直接写出点的坐标.
4、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
(1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
①直线;②双曲线;③抛物线.
(2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
(3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
5、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).
(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;
(2)求甲、乙两人在途中相遇的时间.
-参考答案-
一、单选题
1、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、D
【分析】
分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
【详解】
解:A、0是单项式,正确,不符合题意;
B、多项式的次数是4,正确,不符合题意;
C、的系数是,正确,不符合题意;
D、的系数是-1,次数是1,错误,符合题意,
故选:D.
【点睛】
本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
3、A
【分析】
根据对顶角的性质,可得∠1的度数.
【详解】
解:由对顶角相等,得
∠1=∠2,又∠1+∠2=80°,
∴∠1=40°.
故选:A.
【点睛】
本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.
4、A
【分析】
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
5、C
【分析】
根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.
【详解】
解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,
故选:C.
【点睛】
此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.
6、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、D
【分析】
根据等式的性质即可求出答案.
【详解】
解:A.a=b的两边都加5,可得a+5=b+5,原变形正确,故此选项不符合题意;
B.a=b的两边都除以3,可得,原变形正确,故此选项不符合题意;
C.的两边都乘6,可得,原变形正确,故此选项不符合题意;
D.由|a|=|b|,可得a=b或a=−b,原变形错误,故此选项符合题意.
故选:D.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.
8、C
【分析】
分别求出各视图的面积,故可求出表面积.
【详解】
由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
故表面积为2×(4+3+5)=24
故选C.
【点睛】
此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
9、A
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
B、∵∠3=∠4,
∴AB∥CD,
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
D、∵∠1=∠5,
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
10、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、
【解析】
【分析】
先利用勾股定理求出,再根据作图过程可得,然后根据实数与数轴的关系即可得.
【详解】
解:由题意得:,
,
由作图过程可知,,
由数轴的性质可知,点对应的数大于0,
则在数轴上,点对应的数是,
故答案为:.
【点睛】
本题考查了勾股定理、实数与数轴,掌握理解勾股定理是解题关键.
2、 2 两点确定一条直线
【解析】
【分析】
根据两点确定一条直线解答.
【详解】
解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,
故答案为:2,两点确定一条直线.
【点睛】
此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.
3、12
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
证明Rt△AIC≌Rt△CGK,得到AI=CG,利用勾股定理结合面积法求得CG=,进一步计算即可求解.
【详解】
解:过点A作AI⊥BC于点I,
∵正方形ACKL,∴∠ACK=90°,AC=CK,
∴∠ACI+∠KCG=90°,∠ACI+∠CAI=90°,
∴Rt△AIC≌Rt△CGK,
∴AI=CG,
∵,,.
∴BC=5,
∵,
∴AI=,则CG=,
∵正方形BCDE,
∴CD=BC=5,
∴长方形CDPG的面积为5.
故答案为:12.
.
【点睛】
本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键.
4、9
【解析】
【分析】
由重叠部分面积为c,(b-a)可理解为(b+c)-(a+c),即两个多边形面积的差.
【详解】
解:设重叠部分面积为c, b-a=(b+c)-(a+c)=22-13=9.
故答案为:9.
【点睛】
本题考查了等积变换,添括号,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.
5、
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.
【详解】
解:不等式的解集为,
,
.
故答案为:.
【点睛】
本题考查了一元一次不等式的性质,解一元一次不等式,掌握不等式性质,不等式的两边同时乘以或除以一个负数,不等号的方向发生改变是解题关键.
三、解答题
1、(1)①图见解析;②图见解析;(2)线段垂直平分线上的点到这条线段两个端点的距离相等,等边对等角,110,80,40.
【分析】
(1)①根据线段垂直平分线的尺规作图即可得;
②先连接,再根据角平分线的尺规作图即可得;
(2)先根据线段垂直平分线的性质可得,再根据等腰三角形的性质可得,然后根据三角形的内角和定理可得,从而可得,最后根据角平分线的定义即可得.
【详解】
解:(1)①作边的垂直平分线交于点,交于点如图所示:
②连接,作的平分线交于点如图所示:
(2)∵垂直平分线段,
∴,(线段垂直平分线上的点到这条线段两个端点的距离相等)
∴,(等边对等角)
∵,
∴,
∵,
∴,
∴,
∵平分,
∴.
【点睛】
本题考查了线段垂直平分线和角平分线的尺规作图、线段垂直平分线的性质、等腰三角形的性质等知识点,熟练掌握尺规作图和线段垂直平分线的性质是解题关键.
2、
(1)面积的最大值为
(2)
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)动点从点A开始沿边向点以的速度移动,动点从点开始沿边向点C以的速度移动,所以,.从而,求二次函数最大值即可;
(2)先证,得,从而,即可得解.
(1)
解:由题意可知,,.
∴;
∵,
∴当时,.
∴面积的最大值为;
(2)
解:∵,,
∴.
∴.
即,
解得.
故t的值为.
【点睛】
本题结合三角形面积公式考查了求二次函数的解析式及最值问题,结合相似三角形的判定和性质考查了路程问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.
3、
(1)
(2);
(3)
【分析】
(1)待定系数法求解析式即可;
(2)过点作于点,求得,直线的解析式为,设,点在直线上,则,进而求得,根据二次函数的性质求得最值以及的值,进而求得的坐标;
(3)取点,连接,则,进而证明,根据的解析式求得的解析式,进而联立抛物线解析式即可求得点的坐标.
(1)
解:抛物线的对称轴为直线,与轴交于点、两点,与轴交于点,
设抛物线的解析式为,将点代入得
解得
抛物线的解析式为
即
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
解:如图,过点作于点,
设直线的解析式为,将点,
代入得:
解得
直线的解析式为
,
是等腰直角三角形
轴,
轴
在中,
在直线上方的抛物线上有一动点,设
点在直线上,则
,
即当时,的最大值为:
此时
即
(3)
如图,取点,连接,则,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
又
设直线的解析式为
则
解得
直线的解析式为
设直线的解析式为,过点
解得
直线的解析式为
是抛物线上的一点,则为直线与抛物线的交点,则
解得,
【点睛】
本题考查了二次函数综合,一次函数的平移问题,二次函数最值问题,掌握二次函数的图象的性质是解题的关键.
4、
(1)①
(2)的取值范围是
(3)或
【分析】
(1)根据图形M与图形N是双联图形的定义可直接判断即可;
(2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
(3)根据双联图形的宝座进行判断即可.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
又的半径为2,
∴这两个图形有且只有两个公共点,
∴这两个图形是“双联图形”;
选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
故这两个图形不是“双联图形”;
选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,
故这两个图形不是“双联图形”;
∴选①
故答案为①;
(2)
已知直线与抛物线有且只有两个公共点,
∴将代入抛物线中,得,
配方得,
∵方程有实数解,
∴即
又直线不是双曲线的“双联图形”,
∴直线与双曲线最多有一个公共点,
即当时,代入得,,即,
∴实数的取值范围是;
(3)
∵是二次函数,
∴
∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
∴当时,二次函数的图象与的图象没有交点,
∴不成立;
当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
把C(1,4),B(4,0)代入,得
,
∴,
∴y=-x+4,
∵抛物线与BC不想交,
∴,即ax2+(2a+1)x+a-1=0无实数根,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴(2a+1)2-4a(a-1)
相关试卷
这是一份【高频真题解析】广西省桂林市中考数学三年高频真题汇总 卷(Ⅱ)(精选),共24页。试卷主要包含了一元二次方程的根为等内容,欢迎下载使用。
这是一份【高频真题解析】2022年河北省邢台市中考数学三年真题模拟 卷(Ⅱ)(精选),共22页。试卷主要包含了如图是三阶幻方的一部分,其每行,下列分式中,最简分式是,在,,,中,最大的是等内容,欢迎下载使用。
这是一份【高频真题解析】2022年河北省邢台市中考数学第三次模拟试题(精选),共29页。试卷主要包含了是-2的 .等内容,欢迎下载使用。