还剩23页未读,
继续阅读
【难点解析】湖南省怀化市中考数学模拟真题 (B)卷(含答案解析)
展开这是一份【难点解析】湖南省怀化市中考数学模拟真题 (B)卷(含答案解析),共26页。试卷主要包含了如图,下列条件中不能判定的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、代数式的意义是( )
A.a与b的平方和除c的商B.a与b的平方和除以c的商
C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
2、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个B.3 个C.4 个D.5 个.
3、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75°B.70°C.65°D.55°
4、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
A.B.C.D.
5、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A.B.C.D.
6、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
A.B.C.D.
7、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
8、如图,下列条件中不能判定的是( )
A.B.C.D.
9、若把边长为的等边三角形按相似比进行缩小,得到的等边三角形的边长为( )
A.B.C.D.
10、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
2、计算:______.
3、如图所示, 用手电来测量古城墙高度,将水平的平面镜放置在点 处, 光线从点 出发,经过平面镜反射后,光线刚好照到古城墙 的顶端 处. 如果 , 米, 米, 米, 那么该古城墙的高度是__________米
4、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
5、如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题(5小题,每小题10分,共计50分)
1、若2x=4y+1,27y=3x﹣1,试求x与y的值.
2、如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C,己知点,此抛物线对称轴为.
(1)求抛物线的解析式;
(2)将抛物线向下平移t个单位长度,使平移后所得抛物线的顶点落在内(包括的边界),求t的取值范围;
(3)设点P是抛物线上任一点,点Q在直线上,能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标:若不能,请说明理由.
3、已知:在△ABC中,AB=AC,直线l过点A .
(1)如图1,∠BAC=90°,分别过点B,C作直线l的垂线段BD,CE,垂足分别为D,E.
①依题意补全图1;
②用等式表示线段DE,BD,CE之间的数量关系,并证明;
(2)如图2,当∠BAC≠90°时,设∠BAC=α(0°< α <180°),作∠CEA=∠BDA=α,点D,E在直线l上,直接用等式表示线段DE,BD,CE之间的数量关系为 .
4、某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.
(1)请用含x的式子表示空白部分长方形的面积;(要化简)
(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.
5、如图,在中,,,,动点从点开始沿边向点以的速度移动,动点从点开始沿边向点以的速度移动.若,两点同时出发,当点到达点时,,两点同时停止移动.设点,移动时间为.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)若的面积为,写出关于的函数关系式,并求出面积的最大值;
(2)若,求的值.
-参考答案-
一、单选题
1、D
【分析】
(a+b)2表示a与b的和的平方,然后再表示除以c的商.
【详解】
解:代数式的意义是a与b的和的平方除以c的商,
故选:D.
【点睛】
此题主要考查了代数式的意义,关键是根据计算顺序描述.
2、C
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
3、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
4、A
【分析】
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵,
∴∠OCE=30°
∵OC=4
∴OE=2
∴CE=
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
5、C
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
6、B
【分析】
根据题意可知,中午的气温是,然后计算即可.
【详解】
解:由题意可得,
中午的气温是:°C,
故选:.
【点睛】
本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
7、D
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
∴.
在中,,即,
又∵为的切线,
∴,
∴,
解得或0(不合题意舍去).
故选D.
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
8、A
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
B、∵∠3=∠4,
∴AB∥CD,
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
D、∵∠1=∠5,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
9、A
【分析】
直接根据位似图形的性质求解即可
【详解】
解:∵把边长为的等边三角形按相似比进行缩小,
∴得到的新等边三角形的边长为:
故选:A
【点睛】
本题主要考查了根据位似图形的性质求边长,熟练掌握位似图形的性质是解答本题的关键.
10、C
【分析】
先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
【详解】
解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
∴选项A不正确;
a+b>0,选项B不正确;
∵a<0,b>0,
∴ab<0,选项D不正确;
∵a<b,
∴a﹣b<0,选项C正确,
故选:C.
【点睛】
本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
二、填空题
1、∠ABT=∠ATB=45°(答案不唯一)
【解析】
【分析】
根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
【详解】
解:添加条件:∠ABT=∠ATB=45°,
∵∠ABT=∠ATB=45°,
∴∠BAT=90°,
又∵AB是圆O的直径,
∴AT是圆O的切线,
故答案为:∠ABT=∠ATB=45°(答案不唯一).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
2、-1
【解析】
【分析】
根据有理数减法法则计算即可.
【详解】
解:,
故答案为:-1.
【点睛】
本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.
3、10
【解析】
【分析】
根据两个三角形相似、对应边长度比成比例求出古城墙高度.
【详解】
∵入射角=反射角
∴入射角的余角∠APB=反射角的余角∠CPD
又AB⊥BD;CD⊥BD
∴△ABP∽△CDP
∴
∴CD=PD×=10
故答案为:10
【点睛】
本题考查相似三角形在求建筑物的高度中的应用,找出比例是关键.
4、4m+12##12+4m
【解析】
【分析】
根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
【详解】
解:由面积的和差,得
长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
由长方形的宽为3,可得长方形的长是(2m+3),
长方形的周长是2[(2m+3)+3]=4m+12.
故答案为:4m+12.
【点睛】
本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
5、一
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“!”与“一”是相对面,
故答案是:一.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
三、解答题
1、
【分析】
根据幂的乘方的意义得到二元一次方程组,再进行计算即可.
【详解】
解:∵2x=4y+1,27y=3x﹣1,
∴
∴
整理得,
①+②得,
把代入①得,
∴
∴方程组的解为
【点睛】
本题主要考查了幂的乘方和解二元一次方程组,熟练掌握解题步骤是解答本题的关键.
2、
(1)即抛物线的解析式为:;
(2)若将抛物线向下平移t个单位长度,使平移后所得的抛物线的顶点落在内部(包含边界),则;
(3)能成为以点P为直角顶点的等腰直角三角形,点P的坐标为或(3,4)或或(,).
【分析】
(1)将点B及对称轴代入,解方程组即可确定抛物线解析式;
(2)先求直线BC的解析式,再求出抛物线顶点坐标,求出BC上与顶点横坐标相同的点的坐标,即可求出平移的范围;
(3)分两种情况进行讨论:①当P在x轴上方时;②当P点在x轴下方时;过点P作于G,轴于H,根据全等三角形的判定定理和性质得出,设点,则可以用m表示,求出m即可确定点P的坐标.
(1)
解:将点B及对称轴代入可得:
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:,
即抛物线的解析式为:;
(2)
解:在中,当时,,即,
由,,设直线BC的解析式为,代入可得:
,
解得:,
直线BC的解析式为:,
中,当时,,
∴顶点坐标为:,
当时,,
∴,
∴若将抛物线向下平移t个单位长度,使平移后所得的抛物线的顶点落在内部(包含边界),则;
(3)
(3)令直线为直线l,
①当P在x轴上方时,
过点P作于G,轴于H, 为等腰直角三角形,
∴ , ,
∴,
在与中,
,
∴
∴,
设点,
则,,
∴,
解得:或,
即或(3,4);
②当P点在x轴下方时,如图所示:过点P作于G,轴于H, 为等腰直角三角形,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴ , ,
∴,
在与中,
,
∴
∴,
设点,
则,,
∴,
解得:或,
当时,;
当时,;
即,或(,);
综上所述,能成为以点P为直角顶点的等腰直角三角形,点P的坐标为:或(3,4)或或(,).
【点睛】
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,二次函数动点问题中等腰直角三角形的存在性问题;此题通过作两条互相垂直的辅助线,把等腰直角三角形的问题转化为全等三角形的问题,继而转化为线段相等的问题,是解题的关键.
3、
(1)①见详解;②结论为DE=BD+CE,证明见详解;
(2)DE=BD+CE.证明见详解.
【分析】
(1)①依题意在图1作出CE、BD ,标出直角符号,垂足即可;
②结论为DE=BD+CE,先证∠ECA=∠BAD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD,即可;
(2)DE=BD+CE.根据∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,得出∠CAE=∠ABD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD即可.
(1)
解:①依题意补全图1如图;
②结论为DE=BD+CE,
证明:∵CE⊥l,BD⊥l,
∴∠CEA=∠BDA=90°,
∴∠ECA+∠CAE=90°,
∵∠BAC=90°,
∴∠CAE+∠BAD=90°
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠ECA=∠BAD,
在△ECA和△DAB中,
,
∴△ECA≌△DAB(AAS),
∴EA=BD,CE=AD,
∴ED=EA+AD=BD+CE;
(2)
DE=BD+CE.
证明:∵∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,
∴∠CAE+∠BAD=180°-α,∠BAD+∠ABD=180°-α,
∴∠CAE=∠ABD,
在△ECA和△DAB中,
,
∴△ECA≌△DAB(AAS),
∴EA=BD,CE=AD,
∴ED=EA+AD=BD+CE;
故答案为:ED= BD+CE.
【点睛】
本题考查一线三等角,三角形内角和,平角,三角形全等判定与性质,掌握一线三等角特征,三角形内角和,平角,三角形全等判定方法与性质是解题关键.
4、
(1)
(2)超过,理由见解析
【分析】
(1)空白部分长方形的两条边长分别是(30-2x)m,(20-x)m.得空白部分长方形的面积;
(2)通过有理数的混合运算得结果与400进行比较.
(1)
空白部分长方形的两条边长分别是(30-2x)m,(20-x)m.
空白部分长方形的面积:(30-2x)(20-x)=(2x2-70x+600) m2.
(2)
超过.
∵2×22-70×2+600=468(m2),
∵468>400,
∴空白部分长方形面积能超过400 m2.
【点睛】
本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.
5、
(1)面积的最大值为
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
【分析】
(1)动点从点A开始沿边向点以的速度移动,动点从点开始沿边向点C以的速度移动,所以,.从而,求二次函数最大值即可;
(2)先证,得,从而,即可得解.
(1)
解:由题意可知,,.
∴;
∵,
∴当时,.
∴面积的最大值为;
(2)
解:∵,,
∴.
∴.
即,
解得.
故t的值为.
【点睛】
本题结合三角形面积公式考查了求二次函数的解析式及最值问题,结合相似三角形的判定和性质考查了路程问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.