真题解析湖南省长沙市中考数学模拟真题测评 A卷(精选)
展开
这是一份真题解析湖南省长沙市中考数学模拟真题测评 A卷(精选),共23页。试卷主要包含了下列式子中,与是同类项的是,如图,在中,,,,则的度数为等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
2、抛物线的顶点为( )
A.B.C.D.
3、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
4、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
5、下列式子中,与是同类项的是( )
A.abB.C.D.
6、如图,在中,,,,则的度数为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.87°B.88°C.89°D.90°
7、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
8、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
9、下列几何体中,截面不可能是长方形的是( )
A.长方体B.圆柱体
C.球体D.三棱柱
10、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
A.∠FBAB.∠DBCC.∠CDBD.∠BDG
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
2、如图,在中,,,,以点A为圆心,的长为半径画弧,以点B为圆心,的长为半径画弧,两弧分别交于点D、F,则图中阴影部分的面积是_________.
3、如图,和均为等边三角形,,分别在边,上,连接,,若,则__________.
4、如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.
5、如图,Rt △ABC,∠B=90∘,∠BAC=72°,过C作CF∥AB,联结 AF 与 BC 相交于点 G,若 · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
GF=2AC,则 ∠BAG=_____________°.
三、解答题(5小题,每小题10分,共计50分)
1、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
2、如图,,,且,,求A点的坐标.
3、如图,已知直线,,平分.
(1)求证:;
(2)若比的2倍少3度,求的度数.
4、解方程:
(1);
(2).
5、如图,在数轴上点A表示数a,点B表示数b,点C表示数c,且a、c满足.若点A与点B之间的距离表示为,点B与点C之间的距离表示为,点B在点A、C之间,且满足.
(1)___________, ___________,___________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)动点M从B点位置出发,沿数轴以每秒1个单位的速度向终点C运动,同时动点N从A点出发,沿数轴以每秒2个单位的速度向C点运动,设运动时间为t秒.问:当t为何值时,M、N两点之间的距离为3个单位?
-参考答案-
一、单选题
1、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
2、B
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
3、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
4、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
5、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
故选:D.
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
6、A
【分析】
延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
【详解】
解:延长DB至E,使BE=AB,连接AE,
∴∠BAE=∠E,
∵,
∴∠BAE=∠E=31°,
∵AB+BD=CD
∴BE+BD=CD
即DE=CD,
∵AD⊥BC,
∴AD垂直平分CE,
∴AC=AE,
∴∠C=∠E=31°,
∴;
故选:A.
【点睛】
此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
7、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
8、D
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
9、C
【分析】
根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.
【详解】
解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,
故选:C.
【点睛】
此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.
10、C
【分析】
根据三角形的外角的概念解答即可.
【详解】
解:A.∠FBA是△ABC的外角,故不符合题意;
B. ∠DBC不是任何三角形的外角,故不符合题意;
C.∠CDB是∠ADB的外角,符合题意;
D. ∠BDG不是任何三角形的外角,故不符合题意;
故选:C.
【点睛】
本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
二、填空题
1、##
【解析】
【分析】
根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.
【详解】
解:由于P为线段AB=2的黄金分割点,且AP是较长线段;
则AP=2×=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:.
【点睛】
本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.
2、
【解析】
【分析】
根据直角三角形30度角的性质及勾股定理求出AC、BC,∠A=60°,利用扇形面积公式求出阴影面积.
【详解】
解:在中,,,,
∴AC=1,,∠A=60°,
∴图中阴影部分的面积=
=
=,
故答案为:.
【点睛】
此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.
3、##45度
【解析】
【分析】
根据题意利用全等三角形的判定与性质得出和,进而依据进行计算即可.
【详解】
解:∵和均为等边三角形,
∴,
∴
在和中,
,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
4、##
【解析】
【分析】
设,则 结合再利用勾股定理建立方程再解方程求解 再利用勾股定理求解梯子的长即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:设,则 而
由勾股定理可得:
整理得:
解得:
所以梯子的长度为m.
故答案为:
【点睛】
本题考查的是勾股定理的应用,熟练的利用勾股定理建立方程是解本题的关键.
5、24
【解析】
【分析】
取FG的中点E,连接EC,根据直角三角形斜边上的中线等于斜边的一半可得EC=AC,从而可推出∠EAC=∠AEC=∠F+∠ECF=2∠F,已知,∠BAC=72°,则不难求得∠BAG的度数.
【详解】
解:如图,取FG的中点E,连接EC.
∵FC∥AB,
∴∠GCF=90°,
∴EC=FG=AC,
∴∠EAC=∠AEC=∠F+∠ECF=2∠F,
设∠BAG=x,则∠F=x,
∵∠BAC=72°,
∴x+2x=72°,
∴x=24°,
∴∠BAG=24°,
故答案为:24.
【点睛】
本题考查了直角三角形斜边上的中线,平行线的性质以及角的计算,解题的关键是构造三个等腰三角形.直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.
三、解答题
1、
(1)12%.补图见解析
(2)270
(3)12.5%
【分析】
(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;
(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;
(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:
故答案为:12%.
(2)
解:调查的总人数为:120÷24%=500(人),
参加过滑雪的人数为:500×54%=270(人),
故答案为:270
(3)
解:体验过滑冰的人数为:500×48%=240(人),
(270-240)÷240=12.5%,
体验过滑雪的人比体验过滑冰的人多12.5%.
【点睛】
本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.
2、A点的坐标为(,)
【分析】
根据题意作AM⊥x轴于M,BN⊥AM于N.只要证明△ABN≌△CAM(AAS),即可推出AM=BN,AN=CM,设OM=a,则CM=5-a,BN=AM=3+a,根据MN=AM-AN,列出方程即可解决问题.
【详解】
解:作AM⊥x轴于M,BN⊥AM于N,
∵∠BAC=90°,
∴∠MAB+∠CAN=90°,
∵∠MAB+∠ABN=90°,
∴∠ABN=∠CAM,
在△ABN和△CAM中,
,
∴△ABN≌△CAM(AAS),
∴AM=BN,AN=CM,
∵,,
设OM=a,则CM=5-a,BN=AM=3+a,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴MN=AM-AN,
5=3+a-(5-a),
∴a=,
∴OM=,AM=,
∴A点的坐标为(,).
【点睛】
本题考查全等三角形的判定和性质以及平面直角坐标系点的特征,正确作出辅助线构建全等三角形是解题的关键.
3、
(1)见解析
(2)
【分析】
(1)根据平行线的性质,角平分线的定义,直角三角形的两锐角互余可得,,,进而即可得,即;
(2)根据题意,由(1)的角度之间关系可得,结合已知条件建立二元一次方程组,解方程组即可求解.
(1)
如图,
平分
,
即
(2)
如图,
由比的2倍少3度,
即①
,又
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
即②
解得
【点睛】
本题考查了平行线的性质,直角三角形的两锐角互余,二元一次方程组,数形结合是解题的关键.
4、
(1)x=2;
(2)x=-1
【分析】
(1)根据一元一次方程的解法解答即可;
(2)根据一元一次方程的解法解答即可.
(1)
解:去括号,得:8-4x+12=6x,
移项、合并同类项,得:-10x=-20,
化系数为1,得:x=2;
(2)
解:去分母,得:3(2x+3)-(x-2)=6,
去括号,得:6x+9-x+2=6,
移项、合并同类项,得:5x=-5,
化系数为1,得:x=-1;
【点睛】
本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
5、
(1)-2,2,10;
(2)1或7
【分析】
(1)根据非负性,得到a+2=0,c-10=0,将线段长转化为绝对值即|b-c|=2||a-b,化简绝对值;
(2)先用t分别表示M,N代表的数,根据MN=3,转化为绝对值问题求解.
(1)
∵,
∴a= -2,c=10,
∵点B在点A、C之间,且满足,
∴10-b=2(b+2),
解得b=2,
故答案为:-2,2,10;
(2)
设运动时间为t秒,则点N表示的数为2t-2;点M表示的数为t+2,
根据题意,得|t+2-(2t-2)|=3,
∴-t+4=3或-t+4= -3,
解得t=1或t=7,
故t为1或7时,M、N两点之间的距离为3个单位.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了实数的非负性,数轴上两点间的距离,绝对值的化简,熟练把线段长转化为绝对值表示是解题的关键.
相关试卷
这是一份【难点解析】湖南省长沙市中考数学模拟真题测评 A卷(含答案解析),共25页。试卷主要包含了如图,某汽车离开某城市的距离y,下列方程变形不正确的是等内容,欢迎下载使用。
这是一份【历年真题】湖南省邵阳县中考数学模拟真题测评 A卷(精选),共22页。试卷主要包含了下列图像中表示是的函数的有几个等内容,欢迎下载使用。
这是一份备考特训湖南省长沙市中考数学备考真题模拟测评 卷(Ⅰ)(精选),共29页。试卷主要包含了下列图像中表示是的函数的有几个,下列等式变形中,不正确的是,如图,A等内容,欢迎下载使用。