真题解析陕西省汉中市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解)
展开这是一份真题解析陕西省汉中市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解),共26页。试卷主要包含了如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
2、如图,AD为的直径,,,则AC的长度为( )
A.B.C.4D.
3、如图,直线AB与CD相交于点O,若,则等于( )
A.40°B.60°C.70°D.80°
4、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
5、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
6、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.abB.a+bC.abD.a
7、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A.B.C.D.
8、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
9、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
10、有理数在数轴上对应点的位置如图所示,下列结论中正确是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、如图,均是由若干个的基础图形组成的有规律的图案,第①个图案由4个基础图形组成,第②个图案由7个基础图形组成,…,按此规律排列下去,第④个图案中的基础图形个数为______,用式子表示第n个图案中的基础图形个数为______.
3、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
4、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
5、已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
三、解答题(5小题,每小题10分,共计50分)
1、请阅读下面材料,并完成相应的任务;
阿基米德折弦定理
阿基米德(Arehimedes,公元前287—公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
阿拉伯Al-Biruni(973年—1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
阿基米德折弦定理:如图1,AB和BC是的两条弦(即折线ABC是圆的一条折弦),,M是的中点,则从点M向BC所作垂线的垂足D是折弦ABC的中点,即.
这个定理有很多证明方法,下面是运用“垂线法”证明的部分证明过程.
证明:如图2,过点M作射线AB,垂足为点H,连接MA,MB,MC.
∵M是的中点,
∴.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)如图3,已知等边三角形ABC内接于,D为上一点,,于点E,,连接AD,则的周长是______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、计算:
(1)
(2)
3、在数轴上,点A,B分别表示数a,b,且,记.
(1)求AB的值;
(2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
①请用含t的式子分别写出点P、点Q、点C所表示的数;
②当t的值是多少时,点C到点P,Q的距离相等?
4、已知:如图,锐角∠AOB.
求作:射线OP,使OP平分∠AOB.
作法:
①在射线OB上任取一点M;
②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;
③分别以点C,D为圆心,大于的长为半径画弧,在∠AOB内部两弧交于点H;
④作射线MH,交⊙M于点P;
⑤作射线OP.
射线OP即为所求.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接CD.
由作法可知MH垂直平分弦CD.
∴( )(填推理依据).
∴∠COP = .
即射线OP平分∠AOB.
5、如图,方格纸中每个小正方形的边长为1,点A、B、C均为格点.
(1)根据要求画图:①过点C画;②过点C画,垂足为D;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)图中线段______的长度表示点A到直线CD的距离;
(3)比较线段CA、CD的大小关系是______.
-参考答案-
一、单选题
1、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
2、A
【分析】
连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出.
【详解】
解:连接CD
∵
∴AC=DC
又∵AD为的直径
∴∠ACD=90°
∴
∴
∴
故答案为:A.
【点睛】
本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.
3、A
【分析】
根据对顶角的性质,可得∠1的度数.
【详解】
解:由对顶角相等,得
∠1=∠2,又∠1+∠2=80°,
∴∠1=40°.
故选:A.
【点睛】
本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
5、D
【分析】
两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
【详解】
解:∵3600÷20=180米/分,
∴两人同行过程中的速度为180米/分,故A选项不符合题意;
∵东东在爸爸返回5分钟后返回即第20分钟返回
∴m=20-5=15,
∴n=180×15=2700,故B选项不符合题意;
∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
∴运动18分钟时两人相距3240-2430=810米;
∵返程过程中东东45-20=25分钟走了3600米,
∴东东返程速度=3600÷25=144米/分,
∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
∴运动31分钟两人相距756米,故D选项符合题意;
故选D.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
6、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
7、B
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
8、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
9、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
10、C
【分析】
利用数轴,得到,,然后对每个选项进行判断,即可得到答案.
【详解】
解:根据数轴可知,,,
∴,故A错误;
,故B错误;
,故C正确;
,故D错误;
故选:C
【点睛】
本题考查了数轴,解题的关键是由数轴得出,,本题属于基础题型.
二、填空题
1、 (4,2) (0,4)或(0,-4)
【解析】
【分析】
根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;
【详解】
解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,
∴点D的坐标为(4,2);
同理可得点C的坐标为(0,2),
∴OC=2,
∵A(-1,0),B(3,0),
∴AB=4,
∴,
设点P到AB的距离为h,
∴S△PAB=×AB×h=2h,
∵S△PAB=S四边形ABDC,
得2h=8,解得h=4,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵P在y轴上,
∴OP=4,
∴P(0,4)或(0,-4).
故答案为:(4,2);(0,4)或(0,-4).
【点睛】
本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
2、 13
【解析】
【分析】
根据前三个图形中基础图形的个数得出第n个图案中基础图形的个数为3n+1即可.
【详解】
解:观察图形,可知
第①个图案由4个基础图形组成,即4=1×3+1,
第②个图案由7个基础图形组成,即7=2×3+1,
第③个图案由10个基础图形组成,即10=3×3+1,
…
第④个图案中的基础图形个数为13=3×4+1,
第n个图案的基础图形的个数为:3n+1.
故答案为:13,3n+1.
【点睛】
本题考查了图形的变化类、列代数式,解决本题的关键是观察图形的变化寻找规律.
3、
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
故答案为:.
【点睛】
此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
4、4m+12##12+4m
【解析】
【分析】
根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
【详解】
解:由面积的和差,得
长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
由长方形的宽为3,可得长方形的长是(2m+3),
长方形的周长是2[(2m+3)+3]=4m+12.
故答案为:4m+12.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
5、##
【解析】
【分析】
根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.
【详解】
解:由于P为线段AB=2的黄金分割点,且AP是较长线段;
则AP=2×=,
故答案为:.
【点睛】
本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.
三、解答题
1、(1)见解析;(2).
【分析】
(1)先证明,进而得到,再证明,最后由线段的和差解题;
(2)连接CD,由阿基米德折弦定理得,BE=ED+AD,结合题意得到,由勾股定理解得,据此解题.
【详解】
证明:(1)是的中点,
在与中,
与中,
;
(2)如图3,连接CD
等边三角形ABC中,AB=BC
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由阿基米德折弦定理得,BE=ED+AD
故答案为:.
【点睛】
本题考查圆的综合题、全等三角形的判定与性质、等腰三角形的性质、等边三角形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.
2、
(1)
(2)
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序”是解本题的关键,有理数的混合运算的运算顺序为:先乘方,再乘除,最后算加减,有括号先算括号内的运算.
3、
(1)
(2)①点所表示的数为,点所表示的数为,点所表示的数为;②或
【分析】
(1)先根据绝对值的非负性求出的值,再代入计算即可得;
(2)①根据“路程=速度时间”、结合数轴的性质即可得;
②根据建立方程,解方程即可得.
(1)
解:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
解得,
;
(2)
解:①由题意,点所表示的数为,
点所表示的数为,
点所表示的数为;
②,,
由得:,
即或,
解得或,
故当或时,点到点的距离相等.
【点睛】
本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键.
4、
(1)见解析
(2)垂径定理及推论;∠DOP
【分析】
(1)根据题干在作图方法依次完成作图即可;
(2)由垂径定理先证明 再利用圆周角定理证明即可.
(1)
解:如图, 射线OP即为所求.
(2)
证明:连接CD.
由作法可知MH垂直平分弦CD.
∴( 垂径定理 )(填推理依据).
∴∠COP =.
即射线OP平分∠AOB.
【点睛】
本题考查的是平分线的作图,垂径定理的应用,圆周角定理的应用,熟练的运用垂径定理证明是解本题的关键.
5、
(1)见解析
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)AD
(3)CA大于CD
【分析】
(1)根据题意画图即可;
(2)根据点A到直线CD的距离是垂线段AD长,即可填空;
(3)根据垂线段最短即可填空.
(1)
解:①如图所示,直线即为所求
②直线EF和点D即为所求;
(2)
解:点A到直线CD的距离是垂线段AD长,
故答案为:AD.
(3)
解:根据垂线段最短可知,CA大于CD,
故答案为:CA大于CD.
【点睛】
本题考查了画平行线和垂线,垂线的性质,点的直线的距离,解题关键是熟练画图,准确掌握垂线段最短的性质.
相关试卷
这是一份【真题汇编】贵州省中考数学历年真题定向练习 卷(Ⅰ)(含答案及详解),共24页。试卷主要包含了下列方程变形不正确的是等内容,欢迎下载使用。
这是一份【历年真题】陕西省汉中市中考数学真题模拟测评 (A)卷(含答案及解析),共29页。试卷主要包含了如图,A,下列图标中,轴对称图形的是等内容,欢迎下载使用。
这是一份【历年真题】陕西省汉中市中考数学三年真题模拟 卷(Ⅱ)(含答案及详解),共26页。试卷主要包含了如图,,下列等式变形中,不正确的是等内容,欢迎下载使用。