【中考特训】湖南省株洲市中考数学历年真题汇总 卷(Ⅲ)(含答案详解)
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,下列条件中不能判定的是( )
A.B.C.D.
2、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
A.19°B.20°C.24°D.25°
3、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
4、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
5、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
6、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
7、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.3个B.4个C.5个D.6个
8、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
A.B.C.D.
9、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
A.B.C.D.
10、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若a+b=﹣3,ab=1,则(a+1)(b+1)(a﹣1)(b﹣1)=_____.
2、某校六年级两个班共有78人,若从一班调3人到二班,那么两班人数正好相等.一班原有人数是__人.
3、已知,则________.
4、如图, 已知在 Rt 中, , 将 绕点 逆时针旋转 后得 , 点 落在点 处, 点 落在点 处, 联结 , 作 的平分线 , 交线段 于点 , 交线 段 于点 , 那么 的值为____________.
5、计算:__.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知中,,射线CD交AB于点D,点E是CD上一点,且,联结BE.
(1)求证:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)如果CD平分,求证:.
2、已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).
(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;
(2)△AOB与△FOD是否全等,请说明理由;
(3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.
3、计算:
(1)
(2)
4、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
(1)这两种玻璃保温杯各购进多少个?
(2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
5、解方程
(1)
(2)
-参考答案-
一、单选题
1、A
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
B、∵∠3=∠4,
∴AB∥CD,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
D、∵∠1=∠5,
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
2、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
3、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
4、D
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
5、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
6、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
7、C
【分析】
根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
【详解】
解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
所以上层至少1块,底层2行至少有3+1=4块,
所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
故选:C
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
8、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:∵袋子中共有6个小球,其中白球有3个,
∴摸出一个球是白球的概率是.
故选:C.
【点睛】
本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
9、D
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
【详解】
解:在Rt△ABC中,AB=,
∴点B所走过的路径长为=
故选D.
【点睛】
本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
10、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
二、填空题
1、-5
【解析】
【分析】
根据多项式乘多项式的乘法法则解决此题.
【详解】
解:∵a+b=-3,ab=1,
∴(a+1)(b+1)(a-1)(b-1)
=[(a+1)(b+1)][(a-1)(b-1)]
=(ab+a+b+1)(ab-a-b+1)
=(1-3+1)×(1+3+1)
=-1×5
=-5.
故答案为:-5.
【点睛】
本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键.
2、42
【解析】
【分析】
设一班原有人数是人,则二班原有人数是人,根据从一班调3人到二班,那么两班人数正好相等,列方程求解.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解答:解:设一班原有人数是人,则二班原有人数是人,依题意有:
,
解得.
故一班原有人数是42人.
故答案为:42.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.
3、3
【解析】
【分析】
把变形后把代入计算即可.
【详解】
解:∵,
∴,
故答案为:3.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.
4、
【解析】
【分析】
根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.
【详解】
如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,
∵,
∴设,,,
由旋转可得:,,,
∴,,
∴,,,
∵AN是平分线,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,即可得,
∴,
设直线BE的解析式为,
把,代入得:,
解得:,
∴,
当时,,
解得:,
∴,
∴,
∵,,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.
5、
【解析】
【分析】
先得出最简公分母为12,再进行通分和约分运算即可求出答案.
【详解】
解:原式
.
【点睛】
本题考查了有理数的加减混合运算,对于异分母分数的加减混合运算,先要通分转化成同分母分数的加减混合运算是解决问题的关键.
三、解答题
1、
(1)见解析;
(2)见解析
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)先根据相似三角形的判定证明△ADE∽△CDB,则可证得即,再根据相似三角形的判定即可证得结论;
(2)根据角平分线定义和相似三角形的性质证明∠DCB=∠EAB=∠EBA=45°,则△AEB为等腰直角三角形,根据勾股定理可得AB2=2BE2,再根据相似三角形的判定证明△EBD∽△ECB即可证得结论.
(1)
证明:∵,∠ADE=∠CDB,
∴△ADE∽△CDB,
∴即,又∠ADC=∠EDB,
∴;
(2)
证明:∵CD平分,∠ACB=90°,
∴∠ACD=∠DCB=45°,
∵△ADE∽△CDB,,
∴∠DCB=∠EAD=∠EBD=45°,
∴AE=BE,∠AEB=90°,
∴△AEB为等腰直角三角形,
∴AB2=AE2+BE2=2BE2,
∵∠DCB =∠EBD,∠CEB =∠BED,
∴△CEB∽△BED,
∴即,
∴AB2=2BE2=2ED·EC.
【点睛】
本题主要考查相似三角形的判定与性质、角平分线的定义、三角形内角和定理、等腰直角三角形的判定、勾股定理,熟练掌握相似三角形的判定与性质是解答的关键.
2、
(1)E(,)
(2)△AOB≌△FOD,理由见详解;
(3)P(0,-3)或(4,1)或(,).
【分析】
(1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D的坐标,然后根据点E到两坐标轴的距离相等,得到OE平分∠BOC,进而求出点E的坐标即可;
(2)首先求出直线DE的解析式,得到点F的坐标,即可证明△AOB≌△FOD;
(3)首先求出直线GC的解析式,求出AB的长,设P(m,m-3),分类讨论①当AB=AP时,②当AB=BP时,③当AP=BP时,分别求出m的值即可解答.
(1)
解: 连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当y=0时,-3x+3=0,
解得x=1,
∴A(1,0),
当x=0时,y=3,
∴OB=3,B(0,3),
∵点D与点C关于y轴对称,C(3,0),OC=3,
∴D(-3,0),
∵点E到两坐标轴的距离相等,
∴EG=EH,
∵EH⊥OC,EG⊥OC,
∴OE平分∠BOC,
∵OB=OC=3,
∴CE=BE,
∴E为BC的中点,
∴E(,);
(2)
解: △AOB≌△FOD,
设直线DE表达式为y=kx+b,
则,
解得:,
∴y=x+1,
∵F是直线DE与y轴的交点,
∴F(0,1),
∴OF=OA=1,
∵OB=OD=3,∠AOB=∠FOD=90°,
∴△AOB≌△FOD;
(3)
解:∵点G与点B关于x轴对称,B(0,3),
∴点G(0,-3),
∵C(3,0),
设直线GC的解析式为:y=ax+c,
,
解得:,
∴y=x-3,
AB== ,
设P(m,m-3),
①当AB=AP时,
=
整理得:m2-4m=0,
解得:m1=0,m2=4,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴P(0,-3)或(4,1),
②当AB=BP时,=
m2-6m+13=0,
△<0
故不存在,
③当AP=BP时,
=,
解得:m=,
∴P(, ),
综上所述P(0,-3)或(4,1)或(,),
【点睛】
此题主要考查待定系数法求一次函数,一次函数与坐标轴的交点,全等三角形的判定,勾股定理.
3、
(1)
(2)
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序”是解本题的关键,有理数的混合运算的运算顺序为:先乘方,再乘除,最后算加减,有括号先算括号内的运算.
4、
(1)购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
(2)该商店共获利530元
【分析】
(1)设购进A型玻璃保温杯x个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;
(2)根据单件利润=售价-进价和总利润=单件利润×销量求解即可.
(1)
解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,
根据题意,得:35x+65(80-x)=3700,
解得:x=50,
80-x=80-50=30(个),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
(2)
解:根据题意,总利润为
(50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)
=240+290
=530(元),
答:该商店共获利530元.
【点睛】
本题考查一元一次方程的应用、有理数混合运算的应用,理解题意,找准等量关系,正确列出方程和算式是解答的关键.
5、
(1)x1=x2=1
(2)x1=,x2=3
【分析】
(1)利用配方法解方程;
(2)利用因式分解法解方程.
(1)
解:,
即(x-1)2=0,
∴x1=x2=1.
(2)
解:,
因式分解得:(2x-1)(x-3)=0,
∴2x-1=0或x-3=0,
∴x1=,x2=3.
【点睛】
本题考查了解一元二次方程-配方法及因式分解法,熟练掌握各自的解法是解本题的关键.
价格\类型
A型
B型
进价(元/个)
35
65
标价(元/个)
50
100
【中考特训】湖南省邵阳县中考数学历年真题汇总 卷(Ⅲ)(含详解): 这是一份【中考特训】湖南省邵阳县中考数学历年真题汇总 卷(Ⅲ)(含详解),共24页。试卷主要包含了单项式的次数是,下列等式变形中,不正确的是等内容,欢迎下载使用。
真题解析湖南省株洲市中考数学历年真题汇总 (A)卷(含答案详解): 这是一份真题解析湖南省株洲市中考数学历年真题汇总 (A)卷(含答案详解),共21页。试卷主要包含了下列式子中,与是同类项的是,下列图形是全等图形的是等内容,欢迎下载使用。
【真题汇编】湖南省中考数学历年真题汇总 (A)卷(含答案详解): 这是一份【真题汇编】湖南省中考数学历年真题汇总 (A)卷(含答案详解),共27页。试卷主要包含了下列语句中,不正确的是,如图,A,有理数 m等内容,欢迎下载使用。