86,2023年山东省济南市长清区崮云湖初级中学中考数学二模补偿训练试题
展开
这是一份86,2023年山东省济南市长清区崮云湖初级中学中考数学二模补偿训练试题,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.如图所示,水平放置的几何体的左视图是( )
A. B. C. D.
2. 华为Mate60Pr手机是全球首款支持卫星通话的智能手机.预计至2024年底,
这款手机的出货量将达到70000000台.将70000000用科学记数法表示应为( )
A.B.C.D.
3 .如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,
那么∠1的度数为( )
A.50°B.60°C.70°D.80°
4 .实数,在数轴上对应点的位置如图所示,则下列结论正确的是( )
A.B.
C.D.您看到的资料都源自我们平台,20多万份试卷,家威杏 MXSJ663 每日最新,性比价最高5.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
6. 下列计算正确的是( )
A.B.C.D.
7.若点都在反比例函数的图象上,则的大小关系是( )
A.B.C.D.
8. 从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,
其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为( )
A. B. C. D.
9. 如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,
两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.
若BC=4,面积为10,则BM+MD长度的最小值为( )
A.B.3C.4D.5
10. 如图,在正方形中,,动点M自A点出发沿AB方向以每秒1cm的速度运动,
同时动点N自A点出发沿折线以每秒3cm的速度运动,到达B点时运动同时停止.
设的面积为y(cm2).运动时间为x(秒),
则下列图象中能大致反映y与x之间函数关系的是( )
A. B. C. D.
二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.
11.因式分解: .
12 .已知是一元二次方程的一个根,则的值为 .
13 .围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,
每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,
则盒子中棋子的总个数是 .
14. 如图,正六边形ABCDEF的边长为2,以顶点A为圆心,AB的长为半径画圆,
则图中阴影部分的面积为 .
15 .某快递公司每天上午为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量(件)与时间(分)之间的函数图象如图所示,那么从开始,
经过______分钟时,当两仓库快递件数相同.
16 .如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,
将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=__________.
三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.
17.计算:.
解不等式组:,并写出它的所有整数解.
19 .如图,在平行四边形ABCD中,点E,F在对角线上,,求证:.
20.为讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党知识测试,
该校七、八年级各有300名学生参加,从中各随机抽取了50名学生的成绩(百分制),
并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:
a . 八年级的频数分布直方图如下:
(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b . 八年级学生成绩在80≤x<90的这一组是:
80 、81、 82 、83、 84、 84、84、84、84、85、85、 86、86.5、87、88、89.5
c. 七、八年级学生成绩的平均数、中位数、众数如下:
根据以上信息,回答下列问题:
表中m的值为 ;
(2) 在随机抽样的学生中,建党知识成绩为84分的学生,
在 年级排名更靠前,理由是 ;
若各年级建党知识测试成绩前90名将参加线上建党知识竞赛,
预估八年级分数至少达到 分的学生才能入选;
若成绩85分及以上为“优秀”,请估计八年级达到“优秀”的人数.
21.图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.
已知屋面AE的倾斜角为,长为3米的真空管AB与水平线AD的夹角为,
安装热水器的铁架竖直管CE的长度为0.5米.
(1)真空管上端B到水平线AD的距离.
(2)求安装热水器的铁架水平横管BC的长度.(结果精确到0.1米)
参考数据:,,,,,
22 . 如图,AB=BC,以BC为直径作⊙O,AC交⊙O于点E,过点E作EG⊥AB于点F,
交CB的延长线于点G.
(1)求证:EG是⊙O的切线;
(2)若GF=2,GB=4,求⊙O半径.
23 . 第19届杭州亚运会,吉祥物为“宸宸”、“琮琮”、“莲莲”,
如图,某校准备举行“第19届亚运会”知识竞赛活动,
拟购买30套吉祥物(“宸宸”、“琮琮”、“莲莲”)作为竞赛奖品.某商店有甲,乙两种规格,
其中乙规格比甲规格每套贵20元.
(1)若用700元购买甲规格与用900元购买乙规格的数量相同,求甲、乙两种规格每套吉祥物的价格;
(2)在(1)的条件下,若购买甲规格数量不超过乙规格数量的2倍,如何购买才能使总费用最少?
24 . 定义:在平面直角坐标系中,过点P,Q分别作x轴,y轴的垂线所围成的矩形,
叫做P,Q的“关联矩形”,如图所示.
已知点A(﹣2,0)
①若点B的坐标为(3,2),则点A,B的“关联矩形”的周长为 .
②若点C在直线y=4上,且点A,C的“关联矩形”为正方形,求直线AC的解析式.
已知点M(1,﹣2),点N(4,3),若使函数的图象与点M、N的“关联矩形”有公共点,
求k的取值范围.
25.如图,抛物线与x轴交于点A(-1,0)和B(3,0),与y轴交于点C.
(1)求抛物线的表达式;
(2)如图1,若点M为直线BC上方抛物线一动点(与点B、C不重合),作MN平行于y轴,交直线BC于点N,当线段MN的长最大时,请求出点M的坐标;
(3)如图2,若P为抛物线的顶点,动点Q在抛物线上,当时,请求出点Q的坐标.
26 .在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE,点E在△ABC的内部,
连接EC,EB和ED,设EC=k•BD(k≠0).
(1)当∠ABC=∠ADE=60°时,如图1,请求出k值,并给予证明;
(2)当∠ABC=∠ADE=90°时:
①如图2,(1)中的k值是否发生变化,如无变化,请给予证明;如有变化,请求出k值并说明理由;
②如图3,当D,E,C三点共线,且E为DC中点时,请求出tan∠EAC的值.
2023年山东省济南市长清区崮云湖中学九中考数学二模补偿训练试题 参考答案
一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.
1.【答案】D 2.【答案】C 3 【答案】C 4 .【答案】D 5.【答案】D
6. 【答案】C 7.【答案】D 8.【答案】B 9. 【答案】D 10.【答案】B
二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.
11.【答案】 12 .【答案】3 13 .【答案】
14.【答案】 15 .【答案】20 16 .【答案】
三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.
17.解:
.
18.解:解不等式①,得,
解不等式②,得,
在同一条数轴上表示不等式①②的解集,
原不等式组的解集是,
∴整数解为0,1,2.
19 证明:∵四边形是平行四边形,
∴,,
∴
∵,
∴,
∴.
20.解:(1)八年级共有50名学生,第25, 26名学生的成绩为83分,84分,
∴m= = 83.5(分);
故答案为: 83.5;
(2)在八年级排名更靠前,理由如下:
∵八年级的中位数是83.5分,七年级的中位数是85分,
∴该学生的成绩大于八年级成绩的中位数,而小于七年级成绩的中位数,
∴在八年级排名更靠前;
故答案为:八,该学生的成绩大于八年级成绩的中位数,而小于七年级成绩的中位数;
(3)根据题意得: ×50=15(人)
则在抽取的50名学生中,必须有15人参加建党知识竞赛,
所以至少达到88分;
故答案为: 88;
(4)因为成绩85分及以上有20人,
所以300= 120(人),
所以八年级达到优秀的人数为120人.
21.解:(1)如图,过B作BF⊥AD于F.
在Rt△ABF中,
∵sin∠BAF=,
∴BF=ABsin∠BAF=3sin37°≈1.8.
∴真空管上端B到AD的距离约为1.8米.
(2)在Rt△ABF中,
∵cs∠BAF=,
∴AF=ABcs∠BAF=3cs37°≈2.4,
∵BF⊥AD,CD⊥AD,又BC∥FD,
∴四边形BFDC是矩形.
∴BF=CD,BC=FD,
∵EC=0.5米,
∴DE=CD−CE=1.3米,
在Rt△EAD中,
∵tan∠EAD=,
∴,
∴AD=3.25米,
∴BC=DF=AD−AF=3.25−2.4=0.85≈0.9
∴安装热水器的铁架水平横管BC的长度约为0.9米.
,CD⊥AD,又BC∥FD,
∴四边形BFDC是矩形.
∴BF=CD,BC=FD,
∵EC=0.5米,
∴DE=CD−CE=1.3米,
在Rt△EAD中,
∵tan∠EAD=,
∴,
∴AD=3.25米,
∴BC=DF=AD−AF=3.25−2.4=0.85≈0.9
∴安装热水器的铁架水平横管BC的长度约为0.9米.
22 . 解:(1)连接OE.
∵AB=BC,
∴∠A=∠C;
∵OE=OC,
∴∠OEC=∠C,
∴∠A=∠OEC,
∴OE∥AB,
∵BA⊥GE,
∴OE⊥EG,且OE为半径;
∴EG是⊙O的切线;
(2)∵BF⊥GE,
∴∠BFG=90°,
∵,GB=4,
∴,
∵BF∥OE,
∴△BGF∽△OGE,
∴,
∴,
∴OE=4,
即⊙O的半径为4.
23 .(1)解:设甲规格吉祥物每套价格元,则乙规格每套价格为元,
根据题意,得,
解得.
经检验,是所列方程的根,且符合实际意义.
.
答:甲规格吉祥物每套价格为70元,乙规格每套为90元.
(2)解:设乙规格购买套,甲规格购买套,总费用为元
根据题意,得
,
解得,
,
,
随的增大而增大.
当时,最小值.
故乙规格购买10套、甲规格购买20套总费用最少.
24 .解:(1)①点A,B的“关联矩形”的长为3﹣(﹣2)=5,宽为2﹣0=2,
∴周长为(5+2)×2=14.
②点A,C的“关联矩形”为正方形时点C有两个,C1(2,4),C2(﹣6,4),如图所示:
设直线AC1的解析式为y=k1x+b1,则
, ∴,
∴直线AC1的解析式为y=x+2;
设直线AC2的解析式为y=k2x+b2,则
, ∴,
∴直线AC2的解析式为y=﹣x﹣2;
∴直线AC的解析式为y=x+2或y=﹣x﹣2.
如图所示:
当k>0时,若函数的图象过点N(4,3),则k=12,所以0<k≤12;
当k<0时,若函数的图象过点(4,﹣2),则k=﹣8,所以﹣8≤k<0;
∴若使函数的图象与点M、N的“关联矩形”有公共点,
k的取值范围为﹣8≤k<0或0<k≤12.
25.(1)解:∵抛物线与x轴交于点A(-1,0)和B(3,0),
∴函数的表达式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3;
(2)解:当 时, ,
∴C(0,3),
设直线BC的解析式为 ,
把点B(3,0),C(0,3)代入得:
,解得: ,
∴直线BC的解析式为y=-x+3,
设M的坐标(m,-m2+2m+3),则N(m,-m+3),
∴MN=-m2+2m+3-(- m+3)=- m2+3m= -(m -)2+,
当m =时,MN的长度最大,
此时M(,);
(3)如图,过点Q作QH⊥y轴于点H,连接PC,
∵ ,
∴点P坐标(1,4),
∵点B(3,0),C(0,3),
∴PC=,PB=,BC=,
∴ ,
∴△PBC为直角三角形,
∴tan∠PBC=,
设点Q(x,﹣x2+2x+3),
∵,
则,
解得:x=0或5或﹣1(舍去0),
故点Q(﹣1,0)或(5,﹣12).
26 .解:(1)k=1,
理由如下:如图1,∵∠ABC=∠ADE=60°,BA=BC,DA=DE,
∴△ABC和△ADE都是等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS)
∴EC=DB,即k=1;
(2)①k值发生变化,k=,
∵∠ABC=∠ADE=90°,BA=BC,DA=DE,
∴△ABC和△ADE都是等腰直角三角形,
∴,,∠DAE=∠BAC=45°,
∴,∠DAB=∠EAC,
∴△EAC∽△DAB,
∴,即EC=BD,
∴k=;
②作EF⊥AC于F,
设AD=DE=a,则AE=a,
∵点E为DC中点,
∴CD=2a,
由勾股定理得,AC=,
∵∠CFE=∠CDA=90°,∠FCE=∠DCA,
∴△CFE∽△CAD,
∴,即,
解得,EF=,
∴AF=,
则tan∠EAC=.年级
平均数
中位数
众数
七年级
87.2
85
91
八年级
85.3
m
90
相关试卷
这是一份2023年山东省济南市长清区第三初级中学中考三模数学试题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省济南市长清区中考数学二模试卷(含解析),共14页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。
这是一份2023年山东省济南市长清区中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。