江西省重点中学盟校2024届高三第一次联考数学试卷(Word版附解析)
展开
这是一份江西省重点中学盟校2024届高三第一次联考数学试卷(Word版附解析),文件包含江西省重点中学盟校2024届高三第一次联考数学试卷原卷版docx、江西省重点中学盟校2024届高三第一次联考数学试卷解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知集合,则( )
A. B. C. D.
2. 已知为虚数单位,为复数的共轭复数,复数满足,则( )
A 1B. C. D.
3. 某工厂随机抽取名工人,对他们某天生产的产品件数进行统计,数据如下表,则该组数据的分位数是( )
A. B. C. D.
4. 已知抛物线的准线与双曲线相交于两点,为抛物线的焦点,若为直角三角形,则实数的值为( )
A. B. C. D.
5. 某地区有10000名考生参加了高三模拟调研考试.经过数据分析,数学成绩近似服从正态分布,则数学成绩位于的人数约为( )
参考数据:,
A 455B. 1359C. 3346D. 1045
6. 核酸检测分析是用荧光定量法,通过化学物质的荧光信号,对在扩增进程中成指数级增加的靶标实时监测,在扩增的指数时期,荧光信号强度达到阀初始数值时,的数量与扩增次数满足,其中为的初始数量,为扩增效率.已知某被测标本扩增次后,数量变为原来的倍,则扩增效率约为( )
参考数据:
A. B. C. D.
7. 过圆上的动点作圆的两条切线,两个切点之间的线段称为切点弦,则圆内不在任何切点弦上的点形成的区域的面积为( )
A. B. C. D.
8. 已知函数的定义域为,,,,若,则( )
A. B. C. 2D. 4
二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)
9. 在的展开式中( )
A. 二项式系数之和为B. 第项的系数最大
C. 所有项系数之和为D. 不含常数项
10. 已知函数的最小正周期为,则( )
A.
B. 点是图象的一个对称中心
C. 在上单调递减
D. 将的图象上所有的点向左平移个单位长度,可得到的图象
11. 在平面四边形中,点为动点,的面积是面积的3倍,又数列满足,恒有,设的前项和为,则( )
A. 为等比数列B.
C. 为等差数列D.
三、填空题(本题共3小题,每小题5分,共15分)
12. 已知,,且,则向量与的夹角为_____.
13. 在数学中,有一个被称为自然常数(又叫欧拉数)的常数.小明在设置银行卡的数字密码时,打算将自然常数的前6位数字2,7,1,8,2,8进行某种排列得到密码.如果排列时要求两个2相邻,两个8不相邻,那么小明可以设置的不同密码共有______个.
14. 如图,该“四角反棱柱”是由两个相互平行且全等的正方形经过旋转、连接而成,其侧面均为等边三角形,已知该“四角反棱柱”的棱长为4,则其外接球的表面积为__________.
四、解答题(本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤)
15. 如图,在四棱锥中,平面,底面为直角梯形,,,.
(1)设点为棱的中点,证明:平面.
(2)求平面与平面夹角的大小.
16. 某学校为了学习、贯彻党的二十大精神,组织了“二十大精神”知识比赛,甲、乙两位教师进行答题比赛,每局只有1道题目,比赛时甲、乙同时回答这一个问题,若一人答对且另一人答错,则答对者获得10分,答错者得分;若两人都答对或都答错,则两人均得0分.根据以往答题经验,每道题甲、乙答对的概率分别为,且甲、乙答对与否互不影响,每次答题的结果也互不影响.
(1)求在一局比赛中,甲的得分的分布列与数学期望;
(2)设这次比赛共有3局,若比赛结束时,累计得分为正者最终获胜,求乙最终获胜的概率.
17. 在中,的平分线与边交于点,且.
(1)若,求的面积;
(2)求的最小值.
18. 已知椭圆的方程为,由其个顶点确定的三角形的面积为,点在上,为直线上关于轴对称的两个动点,直线与的另一个交点分别为.
(1)求的标准方程;
(2)证明:直线经过定点;
(3)为坐标原点,求面积最大值.
19. 已知函数,其中.
(1)当时,求函数的图象在处的切线方程;
(2)讨论函数极值点的个数;
(3)若对任意的,关于的方程仅有一个实数根,求实数的取值范围.
件数
人数
相关试卷
这是一份江西省重点中学盟校2024届高三第一次联考数学试卷及答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省重点中学盟校2024届高三第一次联考数学试卷,文件包含江西省重点中学盟校2024届高三第一次联考数学试题pdf、江西省重点中学盟校2024届高三第一次联考数学试题答案pdf、江西省重点中学盟校2024届高三第一次联考数学答题卡pdf等3份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
这是一份江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析),共23页。试卷主要包含了 已知集合,,则, “”的一个充分条件可以是, 函数的大致图象为等内容,欢迎下载使用。