终身会员
搜索
    上传资料 赚现金
    人教A版数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)导学案
    立即下载
    加入资料篮
    人教A版数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)导学案01
    人教A版数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)导学案02
    人教A版数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)导学案03
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理导学案

    展开
    这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理导学案,共12页。学案主要包含了分类加法计数原理,分步乘法计数原理等内容,欢迎下载使用。

    1.通过实例能归纳总结出分类加法计数原理与分步乘法计数原理;
    2.正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.
    3.能利用两个原理解决一些简单的实际问题.
    重点:分类加法计数原理、分步乘法计数原理及其简单应用
    难点: 准确应用两个计数原理解决问题
    一、分类加法计数原理
    完成一件事,如果有n类办法,且:第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法.
    利用分类加法计数原理解题的注意事项
    (1)明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎么才算是完成这件事.
    (2)完成这件事的n类办法,无论用哪类办法中的哪种方法都可以单独完成这件事,而不需要用到其他的方法.
    (3)确立恰当的分类标准,准确地对“完成这件事的办法”进行分类,要求每一种方法必属于某一类办法,不同类办法的任意两种方法不同,也就是分类必须既不重复也不遗漏.从集合的角度看,若完成一件事分A,B两类办法,则A∩B=⌀,A∪B=I(I表示全集).
    二、分步乘法计数原理
    完成一件事,如果需要分成n个步骤,且:做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法.
    利用分步乘法计数原理解题的注意事项
    (1)明确题目中所指的“完成一件事”是什么事,完成这件事需要几步.
    (2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,无论缺少哪一步,这件事都不可能完成.
    (3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐一去做,才能完成这件事,各步之间既不能重复也不能遗漏.
    (4)对于同一个题目,标准不同,分步也不同.分步的基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是不同步骤的方法不能互相替代.
    一、问题导学
    计数问题是我们从小就经常遇到的,通过列举一个一个地数是计数的基本方法,但当问题中的数量很大时,列举的方法效率不高,能否设计巧妙的“数法”,以提高效率呢?下面先分析一个简单的问题,并尝试从中得出巧妙的计数方法.
    问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?
    探究与发现
    问题2.你能说说这个问题的特征吗?
    你能举出一些生活中类似的例子吗?
    二、典例解析
    例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,
    如果这名同学只能选一个专业,那么他共有多少种选择?
    利用分类加法计数原理解题的一般思路
    (1)分类:将完成这件事的办法分成若干类;
    (2)计数:求出每一类中的方法数;
    (3)结论:将每一类中的方法数相加得最终结果.
    问题3. 如果完成一件事有三类不同方案,在第一类方案中有 m1种不同的方法,在第二类方案中有m2种不同的方法,在第三类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有N类不同方案,在每一类中都有若干种不同的方法,那么应该如何计数呢?
    跟踪训练1.在所有的两位数中,个位数字大于十位数字的两位数的个数是( )
    A.18 B.36 C.72 D.48
    问题4. 用前6个大写的英文字母和1~9个阿拉伯数字,以A1, A1,…A9,B1,B2,…的方式给教室里的一个座位编号,总共能编出多少种不同的号码?
    问题5.你能说说这个问题的特征吗?
    你能举出一些生活中类似的例子吗?
    例2.设某班有男生30名,女生24名。现要从中选出男、女生各一名代表班级参
    加比赛,共有多少种不同的选法?
    问题6. 如果完成一件事有三个步骤, 做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?
    如果完成一件事需要有n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?
    如果完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事的方法总数如何计算?
    分步乘法计数原理一般结论:
    例3.书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的体育杂志.
    (1)从书架上任取1本书,有多少种不同的取法?
    (2)从书架的第1、 2、 3层各取1本书,有多少种不同取法?
    (3)从书架上取2本不同学科的书,有多少种不同的取法?
    应用分步乘法计数原理解题的一般思路
    跟踪训练2. 有6名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定6名同学都参加)
    (1)每人恰好参加一项,每项人数不限;
    (2)每项限报一人,且每人至多参加一项;
    (3)每项限报一人,但每人参加的项目不限.
    1.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( )
    A.20种 B.15种 C.10种 D.4种
    2.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同的选法的种数是( )
    A.56 B.65 C.30 D.11
    3. 4张卡片的正、反面分别标有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成 个不同的三位数.
    4.如图所示的电路图,从A到B共有 条不同的线路可通电.
    5.如图,一只蚂蚁沿着长方体的棱,从顶点A爬到相对顶点C1,求其中经过3条棱的路线共有多少条?
    6.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人到边远地区支教,有多少种不同的选法?
    两个原理的联系与区别
    1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.
    2.区别

    参考答案:
    知识梳理
    学习过程

    问题1. 因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.
    问题2.上述计数过程的基本环节是:
    (1)确定分类标准,根据问题条件分为字母号码和数字号码两类;
    (2)分别计算各类号码的个数;
    (3)各类号码的个数相加,得出所有号码的个数.
    例1. 分析:要完成的事情是“选一个专业” .因为这名同学在A,B两所大学中只能选择一所,而且只能选择一个专业,又因为这两所大学没有共同的强项专业,所以符合分类加法计数原理的条件.
    解:这名同学可以选择A,B两所大学中的一所,在A大学中有5种专业选择
    方法,在B大学中有4种专业选择方法,因为没有一个强项专业是两所大学共有的,所以根据分类加法计数原理,这名同学可能的专业选择种数N=5+4=9.
    问题3.分类加法计数原理:完成一件事,如果有n类办法,且:第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法.
    跟踪训练1.解析:方法一 按十位上的数字分别是1,2,3,4,5,6,7,8分成八类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类加法计数原理知,满足条件的两位数共有8+7+6+5+4+3+2+1=36(个).
    方法二 按个位上的数字分别是2,3,4,5,6,7,8,9分成八类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).
    方法三 考虑两位数的个位数字与十位数字的大小关系,利用对应思想解决.
    所有的两位数共有90个,其中,个位数字等于十位数字的两位数为11,22,33,…,99,共9个;有10,20,30,…,90共9个两位数的个位数字与十位数字不能调换位置,则剩余的两位数有90-18=72(个).在这72个两位数中,每一个个位数字(a)小于十位数字(b)的两位数都有一个十位数字(a)小于个位数字(b)的两位数与之对应,故满足条件的两位数的个数是72÷2=36.故选B.
    答案:B
    问题4. 解:方法一:解决计数问题可以用“树状图”列举出来
    方法二:由于6个英文字母中的任意一个都能与6个数字中的任意一个组成一个号码,而且它们互不相同,因此共有6×9=54种不同的号码.
    问题5.上述计数过程的基本环节是:
    (1)由问题条件中的“和”,可确定完成编号要分两步;
    (2)分别计算各步号码的个数;
    (3)将各步号码的个数相乘,得出所有号码的个数.
    例2.分析:选出一组参赛代表,可分两步:第一步, 选男生;第二步,选女生.
    解:第一步,从30名男生中选出1人,有30种不同选择;
    第二步,从24名女生中选出1人,有24种不同选择;
    根据分步计数原理,共有 30×24=720种不同方法.
    问题6. N=m1×m2×m3
    N=m1×m2×…×mn
    例3.解:(1)根据分类加法计数原理可得:N=4+3+2=9;
    (2)根据分步乘法计数原理可得:N=4 ×3×2=24;
    (3)需先分类再分步.
    第一类:从一、二层各取一本,有4×3=12种方法;
    第二类:从一、三层各取一本,有4×2=8种方法;
    第三类:从二、三层各取一本,有3×2=6种方法;
    根据两个基本原理,不同的取法总数是
    N=4×3+4×2+3×2=26
    答: 从书架上取2本不同种的书,有26种不同的取法.
    跟踪训练2. 解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法.
    根据分步乘法计数原理,可得不同的报名方法种数为36=729.
    (2)每项限报一人,且每人至多参加一项,
    因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法.
    根据分步乘法计数原理,可得不同的报名方法种数为6×5×4=120.
    (3)每人参加的项目不限,因此每一个项目都可以从这6人中选出1人参赛.根据分步乘法计数原理,可得不同的报名方法种数为63=216.
    达标检测
    1. 解析:若4本中有3本语文参考书和1本数学参考书,则有4种方法,若4本中有1本语文参考书和3本数学参考书,则有4种方法,若4本中有2本语文参考书和2本数学参考书,则有6种方法,若4本都是数学参考书,则有一种方法,所以不同的赠送方法共有4+4+6+1=15(种).故选B.
    答案:B
    2.解析:(1)第一名同学有5种选择方法,第二名也有5种选择方法,…,依次,第六名同学有5种选择方法,综上,6名同学共有56种不同的选法.故选A.
    3. 解析:分三个步骤:
    第一步:百位可放8-1=7个数;
    第二步:十位可放6个数;
    第三步:个位可放4个数.
    根据分步乘法计数原理,可以组成N=7×6×4=168个不同的三位数.
    答案:168
    4.解析:先分三类.第一类,经过支路①有3种方法;第二类,经过支路②有1种方法;第三类,经过支路③有2×2=4种方法,所以总的线路条数N=3+1+4=8.
    答案:8
    5.解:从总体上看有三类方法,分别经过AB,AD,AA1.从局部上看每一类又需分两步完成.故第一类:经过AB,有m1=1×2=2条;第二类:经过AD,有m2=1×2=2条;第三类:经过AA1,有m3=1×2=2条.根据分类加法计数原理,从顶点A到顶点C1经过3条棱的路线共有N=2+2+2=6条.
    6.解:由题意知,有1人既会英语又会日语,6人只会英语,2人只会日语.
    方法一:分两类.
    第一类:从只会英语的6人中选1人有6种选法,从会日语的3人中选1人有3种选法.此时共有6×3=18(种)选法.
    第二类:从“全能”的人中选1人有1种选法,从只会日语的2人中选1人有2种选法,此时有1×2=2(种)选法.所以由分类加法计数原理知,共有18+2=20(种)选法.
    方法二:设既会英语又会日语的人为甲,则甲有入选和不入选两类情形,入选后又分两种情况:(1)教英语;(2)教日语.
    第一类:甲入选.
    (1)甲教英语,再从只会日语的2人中选1人,由分步乘法计数原理,有1×2=2(种)选法;
    (2)甲教日语,再从只会英语的6人中选1人,由分步乘法计数原理,有1×6=6(种)选法.故甲入选的不同选法共有2+6=8(种).
    第二类:甲不入选.
    可分两步:第一步,从只会英语的6人中选1人有6种选法;第二步,从只会日语的2人中选1人有2种选法.由分步乘法计数原理,有6×2=12(种)不同的选法.综上,共有8+12=20(种)不同的选法.
    A大学
    B大学
    生物学
    数学
    化学
    会计学
    医学
    信息技术学
    物理学
    法学
    工程学

    分类加法计数原理
    分步乘法计数原理
    区别一
    完成一件事共有n类办法,关键词是“分类”
    完成一件事共有n个步骤,关键词是“分步”
    区别二
    每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事
    除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事
    区别三
    各类办法之间是互斥的、并列的、独立的
    各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复
    相关学案

    高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理精品学案: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理精品学案,文件包含人教A版高中数学选择性必修第三册同步讲义第01讲61分类加法计数原理与分步乘法计数原理原卷版doc、人教A版高中数学选择性必修第三册同步讲义第01讲61分类加法计数原理与分步乘法计数原理含解析doc等2份学案配套教学资源,其中学案共0页, 欢迎下载使用。

    人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优质导学案及答案: 这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优质导学案及答案,共8页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,课堂小结,参考答案等内容,欢迎下载使用。

    2020-2021学年6.1 分类加法计数原理与分步乘法计数原理导学案及答案: 这是一份2020-2021学年6.1 分类加法计数原理与分步乘法计数原理导学案及答案,共9页。学案主要包含了典例解析等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教A版数学选择性必修第三册6.1分类加法计数原理与分步乘法计数原理(1)导学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map