|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024届山东省泰安市高三下学期一模数学试题
    立即下载
    加入资料篮
    2024届山东省泰安市高三下学期一模数学试题01
    2024届山东省泰安市高三下学期一模数学试题02
    2024届山东省泰安市高三下学期一模数学试题03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届山东省泰安市高三下学期一模数学试题

    展开
    这是一份2024届山东省泰安市高三下学期一模数学试题,共14页。试卷主要包含了03等内容,欢迎下载使用。

    数学试题
    2024.03
    注意事项:
    1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。
    一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
    1.已知抛物线,则的准线方程为( )
    A.B.C.D.
    2.已知集合,则( )
    A.B.C.D.
    3.在平面内,是两个定点,是动点,若,则点的轨迹为( )
    A.椭圆B.物物线C.直线D.圆
    4.若,则( )
    A.B.C.2D.
    5.在同一直角坐标系中,函数,且的图像可能是( )
    A.B.
    C.D.
    6.已知非零向量满足,若,则与的夹角为( )
    A.B.C.D.
    7.已知函数,若的最小值为,且,则的单调递增区间为( )
    A.B.
    C.D.
    8.已知是双曲线的右焦点,是左支上一点,,当周长最小时,该三角形的面积为( )
    A.B.C.D.
    二、多项选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。
    9.已知复数,则下列说法正确的是( )
    A.若,则
    B.若,则在复平面内对应的点在第二象限
    C.若,则
    D.若,复数在复平面内对应的点为,则直线(为原点)斜率的取值范围为
    10.下列说法中正确的是( )
    A.一组数据的第60百分位数为14
    B.某中学有高中生3500人,初中生1500人,为了解学生学习惝况.用分层抽样的方法从该校学生中抽取一个容量为100的样本,则从的中生中抽取的人数为70
    C.若样本数据的平均数为10,则数据的平均数为3
    D.随机变量服从二项分布,若方差,则
    11.已知函数的定义域为R,且,若,则下列说法正确的是( )
    A.B.有最大值
    C.D.函数是奇函数
    三、填空题:本题共3小题,每小题5分,共15分。
    12.已知二项式的展开式中的系数为15,则_______.
    13.在中,内角的对边分别为,已知,则_______.
    14.如图,在水平放置的底面直径与高相等的圆柱内,放入三个半径相等的实心小球(小球材质密度),向圆柱内注满水,水面刚好淹没小球,若圆柱底面半径为,则球的体积为_______,圆柱的侧面积与球的表面积的比值为_______.
    四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。
    15.(13分)
    如图,在底面为菱形的直四棱柱中,,分别是的中点.
    (1)求证:;
    (2)求平面与平面所成夹角的大小.
    16.(15分)
    某学校为了缓解学生紧张的复习生活,决定举行一次游戏活动,游戏规则为:甲箱子里装有3个红球和2个黑球,乙箱子里装有2个红球和2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,且每次游戏结束后将球放回原箱,摸出一个红球记2分,摸出一个黑球记-1分,得分在5分以上(含5分)则获奖.
    (1)求在1次游戏中,获奖的概率;
    (2)求在1次游戏中,得分X的分布列及均值.
    17.(15分)
    已知圆与轴交于点,且经过椭圆的上顶点,椭圆的离心率为.
    (1)求椭圆的方程;
    (2)若点为椭圆上一点,且在轴上方,为关于原点的对称点,点为椭圆的右顶点,直线与交于点的面积为,求直线的斜率.
    18.(17分)
    已知函数.
    (1)若,曲线在点处的切线与直线垂直,证明:;
    (2)若对任意的且,函数,证明:函数在上存在唯一零点.
    19.(17分)
    已知各项均不为0的递增数列的前项和为,且(,且).
    (1)求数列的前项和;
    (2)定义首项为2且公比大于1的等比数列为“-数列”.
    证明:①对任意且,存在“-数列”,使得成立;
    ②当且时,不存在“-数列”,使得对任意正整数成立.
    高三一轮检测
    数学试题参考答案及评分标准
    2024.03
    一、选择题:
    二、选择题:
    三、填空题:
    12.6 13. 14.
    四、解答题:
    15.(13分)
    解:取中点,连接
    因为底面为菱形,,
    所以
    以为原点,所在直线分别为轴,轴,轴,建立如图所示的空间直角坐标系,
    则,
    (1)
    (2)设平面的法向量为

    所以即
    取,则
    为平面的法向量,
    设平面与平面的夹角为,则
    平面与平面的夹角为
    16.(15分)
    解:设“在1次游戏中摸出个红球”为事件
    (1)设“在1次游戏中获奖”为事件,则,且互斥
    (2)由题意可知,所有可能取值为
    的分布列为
    17.(15分)
    解:(1)圆过
    又圆过

    椭圆的方程为
    (2)(法一)解:设,则
    由题知且

    由解得


    直线的斜率或
    (法二)解:如图,连接
    关于原点对称
    三点共线且为中点

    为的重心
    为边中点
    设,则

    直线的斜率或
    18.(17分)
    解:(1)
    设,则
    设,则
    单调递增

    存在使得即
    当时,单调递减
    当时,单调递增
    (2)
    在上单调递增

    设,则
    令,解得
    当时,单调递减;当时,单调递增
    当时,,即


    存在,使得
    又在上单调递增
    函数在上存在唯一零点
    19.(17分)
    解:(1)
    各项均不为0且递增
    化简得
    为等差数列
    (2)证明:设“G-数列”公比为,且,
    (1)由题意,只需证存在对且成立
    即成立
    设,则
    令,解得,
    当时,单调递增,当时,单调递减
    存在,使得对任意且成立
    经检验,对任意且均成立
    对任意且,存在“G-数列”使得成立
    ②由①知,若成立,则成立
    当时,取得,取得
    由得
    不存在
    当且时,不存在“G-数列”使得对任意正整数成立.题号
    1
    2
    3
    4
    5
    6
    7
    8
    答案
    A
    D
    D
    C
    B
    C
    B
    D
    题号
    9
    10
    11
    答案
    ACD
    BC
    ACD
    2
    5
    8
    相关试卷

    山东省泰安市2022届高三一轮检测(一模)数学试题含解析: 这是一份山东省泰安市2022届高三一轮检测(一模)数学试题含解析,共24页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2021届山东省泰安市高三下学期5月四模检测统考数学试题 PDF版: 这是一份2021届山东省泰安市高三下学期5月四模检测统考数学试题 PDF版,文件包含泰安市2020-2021学年高三四模检测统考及高考冲刺数学试卷答案pdf、泰安市2020-2021学年高三四模检测统考及高考冲刺数学试卷doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。

    2022届山东省泰安市高三下学期3月一模考试数学试题PDF版含答案: 这是一份2022届山东省泰安市高三下学期3月一模考试数学试题PDF版含答案,文件包含202203一轮高三数学答案_Printpdf、2022届山东省泰安市高考一模数学试题pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024届山东省泰安市高三下学期一模数学试题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map