苏科版八年级数学下册常考点微专题提分精练专题42即学即用之复合二次根式的化简(原卷版+解析)
展开1.像这样的根式叫做复合二次根式有一些复合二次根式可以借助构造完全平方式进行化简.
例1:
;
例2:
请用上述方法探索并解决下列问题:
(1)化简:;
(2)化简:;
(3)若,且为正整数,求a的值.
2.阅读材料:康康在学习二次根式后、发现一些含根号的式子可以写成另一个式子的平方,
如:,善于思考的康康进行了以下探索:
设(其中、、m、n均为正整数),
则有(有理数和无理数分别对应相等),
∴,,这样康康就找到了一种把式子化为平方式的方法.
请你仿照康康的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若,用含、的式子分别表示a、b,得:________,________;
(2)若,且、均为正整数,试化简:;
(3)化简:.
3.观察下列各式及其化简过程:
,
.
(1)按照上述两个根式的化简过程的基本思路,将化简;
(2)化简;
(3)针对上述各式反映的规律,请你写出中,m,n与a,b之间的关系.
4.像,,…这样的根式叫做复合二次根式.有一些复合二次根式可以借助构造完全平方式进行化简,如:再如:请用上述方法探索并解决下列问题:
(1)化简:;
(2)化简:;
(3)若,且,,为正整数,求的值.
5.先阅读下列材料,再解决问题:
阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及一次根式的性质化去一层根号.
例如:
.
解决问题:化简下列各式
(1);
(2).
6.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的:
因为a===2-,
所以a-2=-.
所以(a-2)2=3,即a2-4a+4=3.
所以a2-4a=-1.
所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
请你根据小明的分析过程,解决如下问题:
(1)计算: = - .
(2)计算:+…+;
(3)若a=,求4a2-8a+1的值.
7.阅读下面的解答过程,然后作答:
有这样一类题目:将化简,若你能找到两个数 m和n,使m2+n2=a 且 mn=,则a+2 可变为m2+n2+2mn,即变成(m+n)2,从而使得化简.
例如:∵5+2=3+2+2=()2+()2+2=(+)2
∴==+
请你仿照上例将下列各式化简
(1),(2).
8.阅读材料:把根式进行化简,若能找到两个数,是且,则把变成开方,从而使得化简.
例如:化简
解:∵
∴;
请你仿照上面的方法,化简下列各式:
(1);
(2)
9.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如,善于思考的小明进行了以下探索:
设(其中a、b、m、n均为正整数),则有,
∴a=m2+2n2,b=2mn.
这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)若,且a、m、n均为正整数,求a的值;
(3)化简:.
10.同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如,,下面我们观察:,反之,,∴,∴
求:(1);
(2);
(3)若,则m、n与a、b的关系是什么?并说明理由.
11.阅读理解题,下面我们观察:
反之,
所以,所以
完成下列各题:
(1)在实数范围内因式分解:;
(2)化简:;
(3)化简:.
12.阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,团结一致、优势互补、取长补短、威力无比.在二次根式中也有这种相辅相成的“对子”.如:(+3)(﹣3)=﹣4,像(+3)和(﹣3)这样的两个二次根式,它们的积不含根号,我们就称这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.再如()与()也互为有理化因式.于是,下面二次根式除法可以这样运算:==7+4.像这样,通过分子、分母同乘以一个式子把分母中的根号化去的过程叫分母有理化.
解决问题:(1)2+3的一个有理化因式是 ,分母有理化结果是 ;
(2)计算:+.
13.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明利用完全平方公式进行了以下探索:
.请你仿照小明的方法解决下列问题:
(1),则______,_______;
(2)已知是的算术平方根,求的值;
(3)当时,化简_______.
14.先阅读下列材料,再解决问题:
阅读材料:数学上有一种根号内又带根号的数,形如,如果你能找到两个数、,使,且,则可变形为,从而达到化去一层根号的目的.
例如:
仿照上例完成下面各题:
填上适当的数:
②试将予以化简.
15.先阅读下列解答过程,然后再解答:
形如的化简,只要我们找到两个正数,使,,使得,,那么便有:
例如:化简
解:首先把化为,这里,由于,即:,,
所以。
问题:
① 填空:,;
② 化简:(请写出计算过程)
专题42 即学即用之复合二次根式的化简
1.像这样的根式叫做复合二次根式有一些复合二次根式可以借助构造完全平方式进行化简.
例1:
;
例2:
请用上述方法探索并解决下列问题:
(1)化简:;
(2)化简:;
(3)若,且为正整数,求a的值.
【答案】(1)
(2)
(3)a的值为或
【分析】(1)根据题目提供的方法将,化简为,进而得到答案;
(2)根据题目提供的方法将,化简为,进而得到答案;
(3)将化简为,继而得到,, 再根据为正整数,即可求出其值,代入即可.
【详解】(1)解:
;
(2)解:
;
(3)解:
,,
又为正整数,
,或者,
当时,;
当,,
综上所述,a的值为或.
【点睛】本题考查完全平方公式,二次根式的性质与化简,掌握完全平方公式的结构特征是正确解答的前提.
2.阅读材料:康康在学习二次根式后、发现一些含根号的式子可以写成另一个式子的平方,
如:,善于思考的康康进行了以下探索:
设(其中、、m、n均为正整数),
则有(有理数和无理数分别对应相等),
∴,,这样康康就找到了一种把式子化为平方式的方法.
请你仿照康康的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若,用含、的式子分别表示a、b,得:________,________;
(2)若,且、均为正整数,试化简:;
(3)化简:.
【答案】(1)
(2)
(3)
【分析】(1)根据完全平方公式进行计算进行求解;
(2)将变为即可求解;
(3)将化为进行求解即可.
【详解】(1)解:∵,
∴,
故答案为:;
(2)∵,
∴;
(3)
.
【点睛】此题考查了二次根式的化简能力,关键是能准确理解并运用相关知识进行求解.
3.观察下列各式及其化简过程:
,
.
(1)按照上述两个根式的化简过程的基本思路,将化简;
(2)化简;
(3)针对上述各式反映的规律,请你写出中,m,n与a,b之间的关系.
【答案】(1);
(2);
(3),.
【分析】(1)将31分解成,再利用完全平方公式即可求出答案;
(2)先将7分解成,计算第二层根式,再将35分解成,利用完全平方公式即可求出答案;
(3)将等式两边同时平方即可求出答案.
【详解】(1)
(2)
(3)
两边平方可得:
∴,
【点睛】本题考查了二次根式的化简与性质及配方法的应用,读懂题中的配方法并明确二次根式的化简方法是解题关键.
4.像,,…这样的根式叫做复合二次根式.有一些复合二次根式可以借助构造完全平方式进行化简,如:再如:请用上述方法探索并解决下列问题:
(1)化简:;
(2)化简:;
(3)若,且,,为正整数,求的值.
【答案】(1)
(2)
(3)14或46.
【分析】(1)利用题中复合二次根式借助构造完全平方式的新方法求解;
(2)利用题中复合二次根式借助构造完全平方式的新方法求解;
(3)利用完全平方公式,结合整除的意义求解.
(1)解:;
(2)解:
(3)解:,且,且,,,为正整数,当,时;当,时,.所以的值为:14或46.
【点睛】本题考查了二次根式的化简,解题的关键是结合完全平方公式进行求解.
5.先阅读下列材料,再解决问题:
阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及一次根式的性质化去一层根号.
例如:
.
解决问题:化简下列各式
(1);
(2).
【答案】(1)
(2)
【分析】(1)将根号里面的7拆分成4和3,4写成2的平方,3写成的平方,进而逆用完全平方和公式,最后将算式整体开方;
(2)将根号里面的9拆分成4和5,4写成2的平方,5写成的平方,进而逆用完全平方差公式,最后将算式整体开方.
【详解】(1)解:
(2)解:
【点睛】本题考查乘法公式的逆用,能够快速的寻找,归纳,总结,并应用规律是解决本题的关键.
6.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的:
因为a===2-,
所以a-2=-.
所以(a-2)2=3,即a2-4a+4=3.
所以a2-4a=-1.
所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
请你根据小明的分析过程,解决如下问题:
(1)计算: = - .
(2)计算:+…+;
(3)若a=,求4a2-8a+1的值.
【答案】(1) ,1;(2) 9;(3) 5
【分析】(1);
(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;
(3)首先化简,然后把所求的式子化成代入求解即可.
【详解】(1)计算: ;
(2)原式;
(3),
则原式,
当时,原式.
【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.
7.阅读下面的解答过程,然后作答:
有这样一类题目:将化简,若你能找到两个数 m和n,使m2+n2=a 且 mn=,则a+2 可变为m2+n2+2mn,即变成(m+n)2,从而使得化简.
例如:∵5+2=3+2+2=()2+()2+2=(+)2
∴==+
请你仿照上例将下列各式化简
(1),(2).
【答案】(1)1+;(2).
【分析】参照范例中的方法进行解答即可.
【详解】解:(1)∵,
∴;
(2)∵,
∴.
8.阅读材料:把根式进行化简,若能找到两个数,是且,则把变成开方,从而使得化简.
例如:化简
解:∵
∴;
请你仿照上面的方法,化简下列各式:
(1);
(2)
【答案】(1)
(2)
【分析】(1)仿照例题,根据,即可求解;
(2)直接利用完全平方公式将原式变形进而得出答案.
【详解】(1)解:∵,
;
(2)解:
.
【点睛】本题考查了二次根式的性质,将被开方数化为平方的形式是解题的关键.
9.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如,善于思考的小明进行了以下探索:
设(其中a、b、m、n均为正整数),则有,
∴a=m2+2n2,b=2mn.
这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)若,且a、m、n均为正整数,求a的值;
(3)化简:.
【答案】(1)m2+6n2,2mn;(2)a=13或7;(3)﹣1.
【分析】(1)利用完全平方公式展开得到,再利用对应值相等即可用m、n表示出a、b;
(2)直接利用完全平方公式,变形后得到对应值相等,即可求出答案;
(3)直接利用完全平方公式,变形化简即可.
【详解】解:(1)∵,
∴a=m2+6n2,b=2mn.
故答案为:m2+6n2,2mn;
(2)∵,
∴a=m2+3n2,mn=2,
∵m、n均为正整数,
∴m=1、n=2或m=2,n=1,
∴a=13或7;
(3)∵,
则.
【点睛】本题考查了二次根式性质和完全平方式的内容,考生须先弄清材料中解题的方法,同时熟练掌握和灵活运用二次根式的相关运算法则以及二次根式的化简公式是解题的关键.
10.同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如,,下面我们观察:,反之,,∴,∴
求:(1);
(2);
(3)若,则m、n与a、b的关系是什么?并说明理由.
【答案】(1);(2);(3),,理由见解析
【分析】(1)将3拆分为2+1,再根据完全平方公式和二次根式化简即可求解;
(2)将4拆分为3+1,再根据完全平方公式和二次根式化简即可求解;
(3)利用二次根式的性质结合完全平方公式直接化简得出即可.
【详解】解:(1)
=
=;
(2);
(3)m+n=a,mn=b.
理由:∵,
∴,
∴m+n+2=a+2,
∴m+n=a,mn=b
【点睛】此题主要考查了二次根式的性质与化简,正确理解二次根式化简的意义是解题关键.
11.阅读理解题,下面我们观察:
反之,
所以,所以
完成下列各题:
(1)在实数范围内因式分解:;
(2)化简:;
(3)化简:.
【答案】(1);(2);(3)
【分析】(1)利用二次根式的性质结合完全平方公示直接化简得出即可;
(2)利用二次根式的性质结合完全平方公示直接化简得出即可;
(3)利用二次根式的性质结合完全平方公示直接化简得出即可.
【详解】解:(1)
(2)
(3).
【点睛】此题主要考查了二次根式的性质与化简,正确理解二次根式化简的意义是解题关键.
12.阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,团结一致、优势互补、取长补短、威力无比.在二次根式中也有这种相辅相成的“对子”.如:(+3)(﹣3)=﹣4,像(+3)和(﹣3)这样的两个二次根式,它们的积不含根号,我们就称这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.再如()与()也互为有理化因式.于是,下面二次根式除法可以这样运算:==7+4.像这样,通过分子、分母同乘以一个式子把分母中的根号化去的过程叫分母有理化.
解决问题:(1)2+3的一个有理化因式是 ,分母有理化结果是 ;
(2)计算:+.
【答案】(1)2﹣3,3+;(2)1
【分析】(1)根据有理化因式的定义即可求出答案.
(2)先将分母有理化,然后根据二次根式的运算法则即可求出答案.
【详解】解:(1)由题意可知:,.
(2)原式=,
=,
=1.
故答案为:(1)2﹣3,3+.
【点睛】本题主要考查了二次根式的知识点,二次根式的运算是解题的关键.
13.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明利用完全平方公式进行了以下探索:
.请你仿照小明的方法解决下列问题:
(1),则______,_______;
(2)已知是的算术平方根,求的值;
(3)当时,化简_______.
【答案】(1)2,1;(2)-2018;(3)2.
【分析】(1)根据题目所给方法对变形即可;
(2)根据题意结合所给方法求出,然后对所求式子变形,整体代入计算即可;
(3)根据题目所给方法,将写成的形式,然后根据二次根式的性质化简即可.
【详解】解:(1)∵,
∴a=2,b=1;
故答案为:2,1
(2)∵是的算术平方根,
∴,
∴;
(3)∵,
∴,
,
,
,
.
故答案为:2
【点睛】本题考查了二次根式的性质,解题的关键是正确理解题中所给方法,将根号内的式子变形为完全平方式的形式.
14.先阅读下列材料,再解决问题:
阅读材料:数学上有一种根号内又带根号的数,形如,如果你能找到两个数、,使,且,则可变形为,从而达到化去一层根号的目的.
例如:
仿照上例完成下面各题:
填上适当的数:
②试将予以化简.
【答案】①,,;②5.
【分析】①直接利用完全平方公式将原式变形进而得出答案;
②直接利用完全平方公式将原式变形进而得出答案.
【详解】先阅读下列材料,再解决问题:
①填上适当的数:
②解:原式
【点睛】本题主要考查了二次根式的性质与化简,正确应用完全平方公式时关键是记住公式形式,把握公式特征.
15.先阅读下列解答过程,然后再解答:
形如的化简,只要我们找到两个正数,使,,使得,,那么便有:
例如:化简
解:首先把化为,这里,由于,即:,,
所以。
问题:
① 填空:,;
② 化简:(请写出计算过程)
【答案】(1),;(2).
【分析】由条件对式子进行变形,利用完全平方公式对的形式化简后就可以得出结论了.
【详解】解:(1)
;
(2)
【点睛】本题考查了二次根式的化简求值,涉及了配方法的运用和完全平方根式的运用及二次根式性质的运用.
人教版八年级数学下册常考点微专题提分精练专题42求平均数众数中位数(原卷版+解析): 这是一份人教版八年级数学下册常考点微专题提分精练专题42求平均数众数中位数(原卷版+解析),共28页。试卷主要包含了一组数据2,4,5,6,5,一组数据等内容,欢迎下载使用。
人教版八年级数学下册常考点微专题提分精练专题07复合二次根式的化简(原卷版+解析): 这是一份人教版八年级数学下册常考点微专题提分精练专题07复合二次根式的化简(原卷版+解析),共21页。
人教版八年级数学下册常考点微专题提分精练专题04已知二元对称式化简求值(原卷版+解析): 这是一份人教版八年级数学下册常考点微专题提分精练专题04已知二元对称式化简求值(原卷版+解析),共13页。