所属成套资源:北师大版年八年级数学下册《同步考点解读专题训练》(原卷版+解析)
- 北师大版年八年级数学下册《同步考点解读专题训练》(培优特训)专项2.2一元一次(组)不等式应用(四大类型)(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》专题1.2等边三角形(专项训练)(原卷版+解析) 试卷 1 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》专题2.1不等式关系及性质(专项训练)(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》专题2.1不等式关系及性质(知识解读)(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》专题2.3一元一次不等式与一次函数(专项训练)(原卷版+解析) 试卷 0 次下载
北师大版年八年级数学下册《同步考点解读专题训练》专题1.2等边三角形(知识解读)(原卷版+解析)
展开
这是一份北师大版年八年级数学下册《同步考点解读专题训练》专题1.2等边三角形(知识解读)(原卷版+解析),共26页。
专题1.2 等边三角形(知识解读)【学习目标】1. 理解等边三角形的定义. 2. 探索并证明等边三角形的性质定理. 3. 探索并掌握等边三角形的判定定理. 4. 通过探究掌握 30°角的直角三角形的性质与应用. 5. 经过应用等边三角形的性质与判定的过程,培养学生分析问题,解决问题的能力. 6. 通过探究含 30°角的直角三角形的性质的过程;增强学生对特殊直角三角形的认识,培养学生分析问题,解决问题的能力. 【知识点梳理】知识点1 等边三角形的概念与性质等边三角形概念三条边都相等的三角形叫做等边三角形.也称为正三角形.注意:等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C= .(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.2.等边三角形的性质(1)等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. (2)三个角都是60°知识点2 等边三角形的判定(1)三个角相等的三角形是等边三角形.(2)有一个角是60°的等腰三角形是等边三角形.知识点3 含有30°角的直角三角形定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 【典例分析】【考点1:等边三角形的性质】【典例1】(2021秋•峨边县期末)如图,等边△ABC的边长为2,AD是BC边上的高,则高AD的长为( )A. B. C.1 D.【变式1-1】(2022春•漳州期中)在△ABC中,AB=AC=BC,则∠A的度数是( )A.40° B.50° C.60° D.70°【变式1-2】(2021秋•紫阳县期末)如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是( )A.1cm B.2cm C.3cm D.4cm【变式1-3】(2022春•海淀区校级期中)如图,等边△ABC的边长为6,AD⊥BC于点D,则AD的长为( )A.3 B.6 C.3 D.3【典例2】(2020•金牛区校级模拟)如图,l1∥l2,等边△ABC的顶点A、B分别在直线l1、l2,则∠1+∠2=( )A.30° B.40° C.50° D.60°【变式2-1】(2022•长安区一模)如图,直线a∥b,等边△ABC的顶点C在直线b上,若∠1=40°,则∠2的度数为( )A.100° B.110° C.120° D.130°【变式2-2】(2021•玉田县二模)如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为( )A.30° B.20° C.25° D.15°【考点2 等边三角形的判定】【典例3】(2020秋•赣榆区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D、E在BC上,且AE=BE.(1)求∠CAE的度数;(2)若点D为线段EC的中点,求证:△ADE是等边三角形.【变式3-1】(2021秋•宽城区校级期中)如图,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.(1)求∠EBC的度数;(2)求证△ABC为等边三角形.【变式3-2】(2020春•朝阳区校级期末)如图,在△ABC中,∠A=120°,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.【典例4】(2021秋•石泉县期末)已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形.【变式4-1】(2020•大冶市模拟)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【变式4-2】(2016秋•岳池县期末)如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【变式4-3】(2021秋•东莞市期末)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)【考点3 :等边三角形的判定与性质】【典例5】(2012秋•红塔区校级期末)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.【变式5-1】(2021秋•永川区校级期中)如图,已知在△ABC中,AD平分∠BAC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:AB=AC;(2)若∠BAC=60°,BE=1,求△ABC的周长.【变式5-2】(2018秋•路北区期末)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点4 :含30°角的直角三角形的性质】【典例6】(2021秋•阳江期末)如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是( )A.3cm B.6cm C.9cm D.12cm【变式6-1】(2021秋•槐荫区期末)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,则AB的长是( )A.8 B.1 C.2 D.4【变式6-2】(2022春•碑林区校级月考)如图,已知∠AOB=60°,点P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=2,则△PMN的周长是( )A.14 B.15 C.16 D.17【变式6-3】(2022•兰州模拟)如图,在平面直角坐标系xOy中,△OAB为等边三角形,顶点A的坐标为A(4,0),则顶点B的坐标为( )A. B. C.(2,4) D.专题1.2 等边三角形(知识解读)【学习目标】1. 理解等边三角形的定义. 2. 探索并证明等边三角形的性质定理. 3. 探索并掌握等边三角形的判定定理. 4. 通过探究掌握 30°角的直角三角形的性质与应用. 5. 经过应用等边三角形的性质与判定的过程,培养学生分析问题,解决问题的能力. 6. 通过探究含 30°角的直角三角形的性质的过程;增强学生对特殊直角三角形的认识,培养学生分析问题,解决问题的能力. 【知识点梳理】知识点1 等边三角形的概念与性质等边三角形概念三条边都相等的三角形叫做等边三角形.也称为正三角形.注意:等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C= .(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.2.等边三角形的性质(1)等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. (2)三个角都是60°知识点2 等边三角形的判定(1)三个角相等的三角形是等边三角形.(2)有一个角是60°的等腰三角形是等边三角形.知识点3 含有30°角的直角三角形定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 【典例分析】【考点1:等边三角形的性质】【典例1】(2021秋•峨边县期末)如图,等边△ABC的边长为2,AD是BC边上的高,则高AD的长为( )A. B. C.1 D.【答案】B【解答】解:∵等边△ABC的边长为2,AD是BC边上的高,∴∠ADC=90°,BD=CD=BC=1,由勾股定理得:AD===,故选:B.【变式1-1】(2022春•漳州期中)在△ABC中,AB=AC=BC,则∠A的度数是( )A.40° B.50° C.60° D.70°【答案】C【解答】解:在△ABC中,AB=AC=BC,∴△ABC是等边三角形,∴∠A=60°,故选:C.【变式1-2】(2021秋•紫阳县期末)如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是( )A.1cm B.2cm C.3cm D.4cm【答案】B【解答】解:∵等边△ABC的边长AB=4cm,BD平分∠ABC,∴∠ACB=60°,DC=AD=2cm,∵∠E=30°,∠E+∠EDC=∠ACB,∴∠EDC=60°﹣30°=30°=∠E,∴CD=CE=2cm,故选:B.【变式1-3】(2022春•海淀区校级期中)如图,等边△ABC的边长为6,AD⊥BC于点D,则AD的长为( )A.3 B.6 C.3 D.3【答案】D【解答】解:在等边△ABC中,∵AD⊥BC,∴D为BC的中点,∵等边三角形的边长为6,∴AB=6,BD=3,根据勾股定理,得AD==3,故选:D.【典例2】(2020•金牛区校级模拟)如图,l1∥l2,等边△ABC的顶点A、B分别在直线l1、l2,则∠1+∠2=( )A.30° B.40° C.50° D.60°【答案】D【解答】解:∵l1∥l2,∴∠1+∠CBA+∠BAC+∠2=180°,∵△ABC是等边三角形,∴∠CBA=∠BAC=60°,∴∠1+∠2=180°﹣(∠CBA+∠BAC)=180°﹣120°=60°,故选:D.【变式2-1】(2022•长安区一模)如图,直线a∥b,等边△ABC的顶点C在直线b上,若∠1=40°,则∠2的度数为( )A.100° B.110° C.120° D.130°【答案】A【解答】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,过B作BM∥直线a,∴∠ABM=∠1=40°,∴∠MBC=60°﹣∠ABM=60°﹣40°=20°,∵直线a∥直线b,∴直线b∥BM,∴∠3=∠MBC=20°,∵∠3+∠ACB+∠2=180°,∴∠2=180°﹣20°﹣60°=100°,故选:A.【变式2-2】(2021•玉田县二模)如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为( )A.30° B.20° C.25° D.15°【答案】D【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故选:D.【考点2 等边三角形的判定】【典例3】(2020秋•赣榆区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D、E在BC上,且AE=BE.(1)求∠CAE的度数;(2)若点D为线段EC的中点,求证:△ADE是等边三角形.【解答】解:(1)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AE=BE,∴∠B=∠EAB,∴∠EAB=30°,∵∠BAC=120°,∴∠CAE=∠BAC﹣∠EAB=120°﹣30°=90°,即∠CAE=90°;(2)方法一:证明:由(1)知,∠CAE=90°,∵∠C=30°,∴∠AEC=60°,∴∠DEA=60°,∵点D为线段EC的中点,∴AD=DE,∴∠DEA=∠DAE,又∵∠DEA=60°,∴∠DEA=∠DAE=60°,∴∠ADE=60°,∴∠DEA=∠DAE=∠ADE,∴△ADE是等边三角形.方法二:证明:由(1)知,∠CAE=90°,∵∠C=30°,∴∠AEC=60°,AE=CE,∴∠DEA=60°,∵点D为EC的中点,∴AD=CE=DE,∴AD=DE=AE,∴△ADE是等边三角形.【变式3-1】(2021秋•宽城区校级期中)如图,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.(1)求∠EBC的度数;(2)求证△ABC为等边三角形.【解答】解:(1)∵CE=CD,∴∠D=∠DEC,∴∠ECB=∠D+∠DEC=2∠D.∵BE=DE,∴∠EBC=∠D.∴∠ECB=2∠EBC.又∵BE⊥CE,∴∠ECB=60°,∠EBC=30°.(2)证明:∵BE⊥CE,AE=CE,∴BE垂直平分AC,∴AB=BC.∵∠ECB=60°.∴△ABC是等边三角形.【变式3-2】(2020春•朝阳区校级期末)如图,在△ABC中,∠A=120°,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.【解答】证明:∵∠A=120°,AB=AC,∴∠B=∠C=30°,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∴∠BDE=∠CDF=60°,∴∠EDF=60°,∵D是BC的中点,∴BD=CD,在△BDE与△CDF中,,∴△BDE≌△CDF,∴DE=DF,∴△DEF是等边三角形.【典例4】(2021秋•石泉县期末)已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形.【解答】证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB,在△ACN和△MCB中,∵,∴△ACN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△CMB,∴∠CAN=∠CMB,又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,∵,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.【变式4-1】(2020•大冶市模拟)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【变式4-2】(2016秋•岳池县期末)如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【解答】证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.【变式4-3】(2021秋•东莞市期末)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC,∵D为AC中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°,∵∠ACB=∠E+∠CDE,∴∠CDE=30°=∠E,∴CD=CE,∵AD=DC,∴AD=CE;(2)AD=CE,如图2,过D作DF∥BC,交AB于F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°﹣60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∴△BFD≌△DCE,∴CE=DF=AD,即AD=CE.【考点3 :等边三角形的判定与性质】【典例5】(2012秋•红塔区校级期末)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=1,∴BD=2,∴BC=2BD=4,∴△ABC的周长为12.【变式5-1】(2021秋•永川区校级期中)如图,已知在△ABC中,AD平分∠BAC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:AB=AC;(2)若∠BAC=60°,BE=1,求△ABC的周长.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,又∵D是BC中点,∴BD=CD,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C,∴AB=AC(2)证明:∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴∠B=∠C=60°∴∠EDB=90°﹣60°=30°,在Rt△BDE中,BD=2BE=2,∴BC=2BD=4,∴△ABC的周长=4×3=12,【变式5-2】(2018秋•路北区期末)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6【考点4 :含30°角的直角三角形的性质】【典例6】(2021秋•阳江期末)如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是( )A.3cm B.6cm C.9cm D.12cm【答案】D【解答】解:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=3cm,在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选:D.【变式6-1】(2021秋•槐荫区期末)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,则AB的长是( )A.8 B.1 C.2 D.4【答案】A【解答】解:Rt△ABC中,∵∠C=90°,∠B=30°,AC=4,∴AB=2AC=8.故选:A.【变式6-2】(2022春•碑林区校级月考)如图,已知∠AOB=60°,点P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=2,则△PMN的周长是( )A.14 B.15 C.16 D.17【答案】C【解答】解:过P作PD⊥OB于点D,在Rt△OPD中,∵∠ODP=90°,∠POD=60°,∴∠OPD=30°,∴OD=OP=×8=4,∴PD=,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴PM=,∴△PMN的周长为:PM+PN+MN=7+7+2=16.故选:C.【变式6-3】(2022•兰州模拟)如图,在平面直角坐标系xOy中,△OAB为等边三角形,顶点A的坐标为A(4,0),则顶点B的坐标为( )A. B. C.(2,4) D.【答案】A【解答】解:过点B作BC⊥AO,垂足为C,∵A(4,0),∴OA=4,∵△OAB为等边三角形,∴OB=BA=OA=4,∴OC=OA=2,∴BC===2,∴B(2,2),故选:A.