2020年湖南省湘西州中考数学试卷
展开
这是一份2020年湖南省湘西州中考数学试卷,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.(4分)(2020•湘西州)下列各数中,比﹣2小的数是( )
A.0B.﹣1C.﹣3D.3
2.(4分)(2020•湘西州)2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是( )
A.0.927×105B.9.27×104C.92.7×103D.927×102
3.(4分)(2020•湘西州)下列运算正确的是( )
A.=﹣2B.(x﹣y)2=x2﹣y2
C.+=D.(﹣3a)2=9a2
4.(4分)(2020•湘西州)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是( )
A.B.C.D.
5.(4分)(2020•湘西州)从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )
A.B.C.D.
6.(4分)(2020•湘西州)已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是( )
A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形
7.(4分)(2020•湘西州)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是( )
A.正比例函数y1的解析式是y1=2x
B.两个函数图象的另一交点坐标为(4,﹣2)
C.正比例函数y1与反比例函数y2都随x的增大而增大
D.当x<﹣2或0<x<2时,y2<y1
8.(4分)(2020•湘西州)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )
A.△BPA为等腰三角形
B.AB与PD相互垂直平分
C.点A、B都在以PO为直径的圆上
D.PC为△BPA的边AB上的中线
9.(4分)(2020•湘西州)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于( )
A.acsx+bsinxB.acsx+bcsx
C.asinx+bcsxD.asinx+bsinx
10.(4分)(2020•湘西州)已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:
①abc>0,
②b﹣2a<0,
③a﹣b+c>0,
④a+b>n(an+b),(n≠1),
⑤2c<3b.
正确的是( )
A.①③B.②⑤C.③④D.④⑤
二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)
11.(4分)(2020•湘西州)﹣的绝对值是 .
12.(4分)(2020•湘西州)分解因式:2x2﹣2= .
13.(4分)(2020•湘西州)若一个多边形的内角和是外角和的两倍,则该多边形的边数是 .
14.(4分)(2020•湘西州)不等式组的解集为 .
15.(4分)(2020•湘西州)如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC= 度.
16.(4分)(2020•湘西州)从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是 .
17.(4分)(2020•湘西州)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为 .
18.(4分)(2020•湘西州)观察下列结论:
(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;
(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;
(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;
…
根据以上规律,在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与AnM相交于O.也会有类似的结论,你的结论是 .
三、解答题(本大題关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)
19.(8分)(2020•湘西州)计算:2cs45°+(π﹣2020)0+|2﹣|.
20.(8分)(2020•湘西州)化简:(﹣a﹣1)÷.
21.(8分)(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.
(1)求证:△BAE≌△CDE;
(2)求∠AEB的度数.
22.(10分)(2020•湘西州)为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:
a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示
b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 76 76 76 77 77 78 79
c.七年级参赛学生成绩的平均数、中位数、众数如下:
d.七年级参赛学生甲的竞赛成绩得分为79分.
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在75分以上(含75分)的有 人;
(2)表中m的值为 ;
(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第 名;
(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
23.(10分)(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.
(1)求口罩日产量的月平均增长率;
(2)按照这个增长率,预计4月份平均日产量为多少?
24.(10分)(2020•湘西州)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.
(1)若D为AC的中点,证明:DE是⊙O的切线;
(2)若CA=6,CE=3.6,求⊙O的半径OA的长.
25.(12分)(2020•湘西州)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.
小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是 ;
探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;
探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;
实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.
26.(12分)(2020•湘西州)已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.
(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;
(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m的值;
(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM的最小值为时,求b的值.
2020年湖南省湘西州中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题4分,共40分.请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)
1.(4分)(2020•湘西州)下列各数中,比﹣2小的数是( )
A.0B.﹣1C.﹣3D.3
【分析】利用数轴表示这些数,从而比较大小.
【解答】解:将这些数在数轴上表示出来:
∴﹣3<﹣2<﹣1<0<3,
∴比﹣2小的数是﹣3,
故选:C.
【点评】本题考查数轴表示数,比较有理数的大小,在数轴表示的数右边总比左边的大.
2.(4分)(2020•湘西州)2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是( )
A.0.927×105B.9.27×104C.92.7×103D.927×102
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.
【解答】解:92700=9.27×104.
故选:B.
【点评】此题考查科学记数法表示较大的数的方法,把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.
3.(4分)(2020•湘西州)下列运算正确的是( )
A.=﹣2B.(x﹣y)2=x2﹣y2
C.+=D.(﹣3a)2=9a2
【分析】根据二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,进行计算即可判断.
【解答】解:A.=2,所以A选项错误;
B.(x﹣y)2=x2﹣2xy+y2,所以B选项错误;
C.+≠,所以C选项错误;
D.(﹣3a)2=9a2.所以D选项正确.
故选:D.
【点评】本题考查了二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,解决本题的关键是综合运用以上知识.
4.(4分)(2020•湘西州)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是( )
A.B.C.D.
【分析】根据从上边看得到的图形是俯视图,可得答案.
【解答】解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,
故选:C.
【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
5.(4分)(2020•湘西州)从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )
A.B.C.D.
【分析】列举出所有可能出现的结果情况,进而求出能构成三角形的概率.
【解答】解:从长度为1cm、3cm、5cm、6cm四条线段中随机取出三条,
共有以下4种结果(不分先后):
1cm 3cm 5cm,
1cm 3cm 6cm,
3cm 5cm 6cm,
1cm 5cm 6cm,
其中,能构成三角形的只有1种,
∴P(构成三角形)=.
故选:A.
【点评】本题考查随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的关键.
6.(4分)(2020•湘西州)已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是( )
A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形
【分析】依据已知条件即可得到∠ODE=∠OGE,即可得到OD=OG,进而得出△ODG是等腰三角形.
【解答】解:如图所示,∵OM平分∠AOB,
∴∠AOC=∠BOC,
由题可得,DG垂直平分OC,
∴∠OED=∠OEG=90°,
∴∠ODE=∠OGE,
∴OD=OG,
∴△ODG是等腰三角形,
故选:C.
【点评】本题主要考查了基本作图以及等腰三角形的判定,如果一个三角形有两个角相等,那么这两个角所对的边也相等.
7.(4分)(2020•湘西州)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是( )
A.正比例函数y1的解析式是y1=2x
B.两个函数图象的另一交点坐标为(4,﹣2)
C.正比例函数y1与反比例函数y2都随x的增大而增大
D.当x<﹣2或0<x<2时,y2<y1
【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.
【解答】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,﹣4),
∴正比例函数y1=﹣2x,反比例函数y2=﹣,
∴两个函数图象的另一个交点为(﹣2,4),
∴A,B选项说法错误;
∵正比例函数y1=﹣2x中,y随x的增大而减小,反比例函数y2=﹣中,在每个象限内y随x的增大而增大,
∴C选项说法错误;
∵当x<﹣2或0<x<2时,y2<y1,
∴选项D说法正确.
故选:D.
【点评】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.
8.(4分)(2020•湘西州)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )
A.△BPA为等腰三角形
B.AB与PD相互垂直平分
C.点A、B都在以PO为直径的圆上
D.PC为△BPA的边AB上的中线
【分析】根据切线的性质即可求出答案.
【解答】解:(A)∵PA、PB为圆O的切线,
∴PA=PB,
∴△BPA是等腰三角形,故A正确.
(B)由圆的对称性可知:AB⊥PD,但不一定平分,
故B不一定正确.
(C)连接OB、OA,
∵PA、PB为圆O的切线,
∴∠OBP=∠OAP=90°,
∴点A、B、P在以OP为直径的圆上,故C正确.
(D)∵△BPA是等腰三角形,PD⊥AB,
∴PC为△BPA的边AB上的中线,故D正确.
故选:B.
【点评】本题考查切线的性质,解题的关键是熟练运用切线的性质,本题属于中等题型.
9.(4分)(2020•湘西州)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于( )
A.acsx+bsinxB.acsx+bcsx
C.asinx+bcsxD.asinx+bsinx
【分析】作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE=∠DAO=x,由三角函数定义得出OD=bsinx,DE=acsx,进而得出答案.
【解答】解:作CE⊥y轴于E,如图:
∵四边形ABCD是矩形,
∴CD=AB=a,AD=BC=b,∠ADC=90°,
∴∠CDE+∠ADO=90°,
∵∠AOD=90°,
∴∠DAO+∠ADO=90°,
∴∠CDE=∠DAO=x,
∵sin∠DAO=,cs∠CDE=,
∴OD=AD×sin∠DAO=bsinx,DE=D×cs∠CDE=acsx,
∴OE=DE+OD=acsx+bsinx,
∴点C到x轴的距离等于acsx+bsinx;
故选:A.
【点评】本题考查了矩形的性质、坐标与图形性质、三角函数定义等知识;熟练掌握矩形的性质和三角函数定义是解题的关键.
10.(4分)(2020•湘西州)已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:
①abc>0,
②b﹣2a<0,
③a﹣b+c>0,
④a+b>n(an+b),(n≠1),
⑤2c<3b.
正确的是( )
A.①③B.②⑤C.③④D.④⑤
【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
②由于a<0,所以﹣2a>0.
又b>0,
所以b﹣2a>0,
故此选项错误;
③当x=﹣1时,y=a﹣b+c<0,故此选项错误;
④当x=1时,y的值最大.此时,y=a+b+c,
而当x=n时,y=an2+bn+c,
所以a+b+c>an2+bn+c,
故a+b>an2+bn,即a+b>n(an+b),故此选项正确;
⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
故④⑤正确.
故选:D.
【点评】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)
11.(4分)(2020•湘西州)﹣的绝对值是 .
【分析】根据绝对值的意义,求出结果即可.
【解答】解:根据负数的绝对值等于它的相反数可得,|﹣|=,
故答案为:.
【点评】本题考查绝对值的意义,理解负数的绝对值等于它的相反数.
12.(4分)(2020•湘西州)分解因式:2x2﹣2= 2(x+1)(x﹣1) .
【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.
【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).
故答案为:2(x+1)(x﹣1).
【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
13.(4分)(2020•湘西州)若一个多边形的内角和是外角和的两倍,则该多边形的边数是 6 .
【分析】任何多边形的外角和是360°,内角和等于外角和的2倍则内角和是720°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【解答】解:设该多边形的边数为n,
根据题意,得,(n﹣2)•180°=720°,
解得:n=6.
故这个多边形的边数为6.
故答案为:6
【点评】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.
14.(4分)(2020•湘西州)不等式组的解集为 x≥﹣1 .
【分析】求出每个不等式的解集,最后求出不等式组的解集即可.
【解答】解:,
∵解不等式①得:x≥﹣3,
解不等式②得:x≥﹣1,
∴不等式组的解集为x≥﹣1,
故答案为:x≥﹣1.
【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
15.(4分)(2020•湘西州)如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC= 36 度.
【分析】根据垂直的定义得到∠BAC=90°,根据三角形的内角和定理得到∠C=90°﹣54°=36°,根据平行线的性质即可得到结论.
【解答】解:∵BA⊥AC,
∴∠BAC=90°,
∵∠ABC=54°,
∴∠C=90°﹣54°=36°,
∵AE∥BC,
∴∠EAC=∠C=36°,
故答案为:36.
【点评】本题考查了平行线的性质,三角形的内角和定理,熟练掌握平行线的性质是解题的关键.
16.(4分)(2020•湘西州)从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是 乙 .
【分析】在平均数基本相等的前提下,方差越小产量越稳定,据此求解可得.
【解答】解:∵甲=乙≈7.5,S甲2=0.010,S乙2=0.002,
∴S甲2>S乙2,
∴乙玉米种子的产量比较稳定,
∴应该选择的玉米种子是乙,
故答案为:乙.
【点评】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
17.(4分)(2020•湘西州)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为 2 .
【分析】由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,由勾股定理得出ED=4,作出图形,根据三角形面积公式列出方程即可得出答案.
【解答】解:∵点A(6,0),
∴OA=6,
∵OD=2,
∴AD=OA﹣OD=6﹣2=4,
∵四边形CODE是矩形,
∴DE∥OC,
∴∠AED=∠ABO=30°,
在Rt△AED中,AE=2AD=8,ED===4,
∵OD=2,
∴点E的坐标为(2,4);
∴矩形CODE的面积为4×2=8,
∵将矩形CODE沿x轴向右平移,矩形CODE与△ABO重叠部分的面积为6
∴矩形CODE与△ABO不重叠部分的面积为2,
如图,设ME′=x,则FE′=x,依题意有
x×x÷2=2,
解得x=±2(负值舍去).
故矩形CODE向右平移的距离为2.
故答案为:2.
【点评】考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质是解题的关键.
18.(4分)(2020•湘西州)观察下列结论:
(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;
(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;
(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;
…
根据以上规律,在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与AnM相交于O.也会有类似的结论,你的结论是 A1N=AnM,∠NOAn= .
【分析】根据已知所给得到规律,进而可得在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程会有类似的结论.
【解答】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC==60°;
(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD==90°;
(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE==108°;
…
根据以上规律,在正n边形A1A2A3A4…An中,
对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,
且A1M=A2N,A1N与AnM相交于O.
也有类似的结论是A1N=AnM,∠NOAn=.
故答案为:A1N=AnM,∠NOAn=.
【点评】本题考查了正多边形和圆、规律型:图形的变化类、全等三角形的判定与性质,解决本题的关键是掌握正多边形的性质.
三、解答题(本大題关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)
19.(8分)(2020•湘西州)计算:2cs45°+(π﹣2020)0+|2﹣|.
【分析】分别根据特殊角的三角函数值,任何非零数的零次幂定义以及绝对值的定义计算即可.
【解答】解:原式=
=
=3.
【点评】本题主要考查了实数的运算,熟记相应定义以及特殊角的三角函数值是解答本题的关键.
20.(8分)(2020•湘西州)化简:(﹣a﹣1)÷.
【分析】先计算括号内分式的减法、将除式分母因式分解,再将除法转化为乘法,最后约分即可得.
【解答】解:原式=(﹣)÷
=•
=.
【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.
21.(8分)(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.
(1)求证:△BAE≌△CDE;
(2)求∠AEB的度数.
【分析】(1)利用等边三角形的性质得到AD=AE=DE,∠EAD=∠EDA=60°,利用正方形的性质得到AB=AD=CD,∠BAD=∠CDA=90°,所以∠EAB=∠EDC=150°,然后根据“SAS”判定△BAE≌△CDE;
(2)先证明AB=AE,然后根据等腰三角形的性质和三角形内角和计算∠AEB的度数.
【解答】(1)证明:∵△ADE为等边三角形,
∴AD=AE=DE,∠EAD=∠EDA=60°,
∵四边形ABCD为正方形,
∴AB=AD=CD,∠BAD=∠CDA=90°,
∴∠EAB=∠EDC=150°,
在△BAE和△CDE中
,
∴△BAE≌△CDE(SAS);
(2)∵AB=AD,AD=AE,
∴AB=AE,
∴∠ABE=∠AEB,
∵∠EAB=150°,
∴∠AEB=(180°﹣150°)=15°.
【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了全等三角形的判定与性质和等边三角形的性质.
22.(10分)(2020•湘西州)为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:
a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示
b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 76 76 76 77 77 78 79
c.七年级参赛学生成绩的平均数、中位数、众数如下:
d.七年级参赛学生甲的竞赛成绩得分为79分.
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在75分以上(含75分)的有 31 人;
(2)表中m的值为 77.5 ;
(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第 24 名;
(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
【分析】(1)将频数分布直方图中第3、4、5组数据相加可得答案;
(2)根据中位数的定义求解可得;
(3)由90≤x≤100的频数为8、80≤x<90的频数为15,据此可得答案;
(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数占被调查人数的比例即可得.
【解答】解:(1)在这次测试中,七年级在75分以上(含75分)的有8+15+8=31(人),
故答案为:31.
(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,
∴m==77.5,
故答案为:77.5;
(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名,
故答案为:24;
(4)估计七年级成绩超过平均数76.9分的人数为500×=270(人).
【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.
23.(10分)(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.
(1)求口罩日产量的月平均增长率;
(2)按照这个增长率,预计4月份平均日产量为多少?
【分析】(1)根据题意设口罩日产量的月平均增长率为x,根据题意列出方程即可求解;
(2)结合(1)按照这个增长率,根据3月份平均日产量为24200个,即可预计4月份平均日产量.
【解答】解:(1)设口罩日产量的月平均增长率为x,根据题意,得
20000(1+x)2=24200
解得x1=﹣2(舍去),x2=0.1=10%,
答:口罩日产量的月平均增长率为10%.
(2)24200(1+0.1)=26620(个).
答:预计4月份平均日产量为26620个.
【点评】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系.
24.(10分)(2020•湘西州)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.
(1)若D为AC的中点,证明:DE是⊙O的切线;
(2)若CA=6,CE=3.6,求⊙O的半径OA的长.
【分析】(1)连接AE,OE,由AB是⊙O的直径,得到∠AEB=90°,根据直角三角形的性质得到AD=DE,求得∠DAE=∠AED,根据切线的性质得到∠CAE+∠EAO=∠CAB=90°,等量代换得到∠DEO=90°,于是得到结论;
(2)证明△AEC∽△BAC,列比例式可得BC的长,最后根据勾股定理可得OA的长.
【解答】(1)证明:连接AE,OE,
∵AB是⊙O的直径,且E在⊙O上,
∴∠AEB=90°,
∴∠AEC=90°,
∵D为AC的中点,
∴AD=DE,
∴∠DAE=∠AED,
∵AC是⊙O的切线,
∴∠CAE+∠EAO=∠CAB=90°,
∵OA=OE,
∴∠OAE=∠OEA,
∴∠DEA+∠OEA=90°,
即∠DEO=90°,
∴DE是⊙O的切线;
(2)解:∵∠AEC=∠CAB=90°,∠C=∠C,
∴△AEC∽△BAC,
∴,
∵CA=6,CE=3.6,
∴,
∴BC=10,
∵∠CAB=90°,
∴AB2+AC2=BC2,
∴AB==8,
∴OA=4,
即⊙O的半径OA的长是4.
【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的性质,相似三角形的性质和判定,正确的识别图形是解题的关键.
25.(12分)(2020•湘西州)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.
小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是 EF=AE+CF ;
探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;
探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;
实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.
【分析】问题背景:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,即可得出结论:EF=AE+CF;
探究延伸1:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;
探究延伸2:延长DC到H,使得CH=AE,连接BH,先证明△BCH≌△BAE,即可得到BE=HB,∠ABE=∠HBC,再证明△HBF≌△EBF,即可得出EF=HF=HC+CF=AE+CF;
实际应用:连接EF,延长BF交AE的延长线于G,根据题意可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.再根据探究延伸2的结论:EF=AE+BF,即可得到两舰艇之间的距离.
【解答】解:问题背景:
如图1,延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;
故答案为:EF=AE+CF;
探究延伸1:
如图2,延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;
探究延伸2:
上述结论仍然成立,即EF=AE+CF,理由:
如图3,延长DC到H,使得CH=AE,连接BH,
∵∠BAD+∠BCD=180°,∠BCH+∠BCD=180°,
∴∠BCH=∠BAE,
∵BA=BC,CH=AE,
∴△BCH≌△BAE(SAS),
∴BE=HB,∠ABE=∠HBC,
∴∠HBE=∠ABC,
又∵∠ABC=2∠MBN,
∴∠EBF=∠HBF,
∵BF=BF,
∴△HBF≌△EBF(SAS),
∴EF=HF=HC+CF=AE+CF;
实际应用:
如图4,连接EF,延长BF交AE的延长线于G,
因为舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,所以∠AOB=140°,
因为指挥中心观测两舰艇视线之间的夹角为70°,所以∠EOF=70°,所以∠AOB=2∠EOF.
依题意得,OA=OB,∠A=60°,∠B=120°,所以∠A+∠B=180°,
因此本题的实际的应用可转化为如下的数学问题:
在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.
根据探究延伸2的结论可得:EF=AE+BF,
根据题意得,AE=75×1.2=90(海里),BF=100×1.2=120(海里),
所以EF=90+120=210(海里).
答:此时两舰艇之间的距离为210海里.
【点评】本题属于四边形综合题,主要考查了全等三角形的判定和性质,解题的关键是正确作出辅助线构造全等三角形,解答时注意类比思想的灵活应用.
26.(12分)(2020•湘西州)已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.
(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;
(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m的值;
(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM的最小值为时,求b的值.
【分析】(1)将A点坐标代入直线与抛物线的解析式中求得k的值和b与c的关系式,再将抛物线的顶点坐标代入求得的直线的解析式,便可求得b、c的值,进而求得E点的坐标;
(2)先根据抛物线的解析式求得C、Q点坐标,用m表示△EQM的面积,再根据S△EQM=S△ACE列出m的方程进行解答;
(3)取点N(0,1),则∠OAN=45°,过D作直线AN的垂线,垂足为G,DG与x轴相交于点M,此时AM+2DM=2DG的值最小,由2DG=列出关于b的方程求解便可.
【解答】解:(1)∵直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),
∴﹣k﹣2=0,1+b+c=0,
∴k=﹣2,c=﹣b﹣1,
∴直线y=kx﹣2的解析式为y=﹣2x﹣2,
∵抛物线y=x2﹣bx+c的顶点坐标为E(,),
∴E(,),
∵直线y=﹣2x﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E,
∴=﹣2×﹣2,
解得,b=2,或B=﹣2(舍),
当b=2时,c=﹣3,
∴E(1,﹣4),
故k=﹣2,b=2,c=﹣3,E(1,﹣4);
(2)由(1)知,直线的解析式为y=﹣2x﹣2,抛物线的解析式为y=x2﹣2x﹣3,
∴C(0,﹣3),Q(2,﹣3),
如图1,设直线y=﹣2x﹣2与y轴交点为N,则N(0,﹣2),
∴CN=1,
∴,
∴,
设直线EQ与x轴的交点为D,显然点M不能与点D重合,
设直线EQ的解析式为y=dx+n(d≠0),
则,
解得,,
∴直线EQ的解析式为y=x﹣5,
∴D(5,0),
∴=,
解得,m=4,或m=6;
(3)∵点D(b+,yD)在抛物线y=x2﹣bx﹣b﹣1上,
∴,
可知点D(b+,)在第四象限,且在直线x=b的右侧,
∵,
∴可取点N(0,1),则∠OAN=45°,
如图2,过D作直线AN的垂线,垂足为G,DG与x轴相交于点M,
∵∠GAM=90°﹣∠OAN=45°,得AM=GM,
则此时点M满足题意,
过D作DH⊥x轴于点H,则点H(b+,0),
在Rt△MDH中,可知∠DMH=∠MDH=45°,
∴DH=MH,DM=MH,
∵点M(m,0),
∴0=()=(b+)﹣m,
解得,m=,
∵,
∴,
解得,Bb=3,
此时,m=,符合题意,
∴b=3.
【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,三角形面积公式,等腰直角三角形的性质,第(2)小题关键是由面积关系列出m的方程,第(3)小题关键是确定AM+2DM的最小值为2DG的值.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2020/8/1 14:37:48;用户:数学03;邮箱:lb03@xyh.cm;学号:21821725年级
平均数
中位数
众数
七
76.9
m
80
年级
平均数
中位数
众数
七
76.9
m
80
相关试卷
这是一份2022年湖南省湘西州中考数学试卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省湘西州中考数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年湖南省湘西州中考数学试卷 (解析版),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。