【真题汇总卷】湖南省湘潭市中考数学一模试题(含答案解析)
展开
这是一份【真题汇总卷】湖南省湘潭市中考数学一模试题(含答案解析),共32页。试卷主要包含了如图,某汽车离开某城市的距离y,下列现象等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
A.3631B.4719C.4723D.4725
2、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
A.B.C.D.不确定
3、下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
4、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
5、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
则关于x的方程的解为( )
A.B.C.D.
6、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.19°B.20°C.24°D.25°
7、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A.B.
C.D.
8、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
A.1B.2020C.2021D.2022
9、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④B.①③C.②④D.③④
10、如图是一个运算程序,若x的值为,则运算结果为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.2D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在菱形中,对角线与之比是,那么________.
2、某树主干长出x根枝干,每个枝干又长出x根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x为______.
3、不等式的解集是__.
4、若,则的值是______.
5、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意一点,则的最小值是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系xOy中,直线l是第一、三象限的角平分线.已知的三个顶点坐标分别为,,.
(1)若与关于y轴对称,画出;
(2)若在直线l上存在点P,使的周长最小,则点P的坐标为______.
2、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
(1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
(2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
3、如图,三角形中,点D在上,点E在上,点F,G在上,连接.己知,,求证:.
将证明过程补充完整,并在括号内填写推理依据.
证明:∵_____________(已知)
∴(_______________________)
∴.________(____________________)
∵(已知)
∴________(等量代换)
∴(___________________)
4、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
(1)当点 在边 上时,
① 求证: ;
②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
(2)联结 , 如果 , 求 的值.
5、如图,在平面直角坐标系中,在第二象限,且,,.
(1)作出关于轴对称的,并写出,的坐标;
(2)在轴上求作一点,使得最小,并求出最小值及点坐标.
-参考答案-
一、单选题
1、D
【分析】
根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
【详解】
解:∵x1=8,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴x2=f(8)=4,
x3=f(4)=2,
x4=f(2)=1,
x5=f(1)=4,
…,
从x2开始,每三个数循环一次,
∴(2022-1)÷3=6732,
∵x2+x3+x4=7,
∴=8+673×7+4+2=4725.
故选:D.
【点睛】
本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
2、C
【分析】
根据公式,得=,=,判断选择即可.
【详解】
∵=,=,
∴=.
故选C.
【点睛】
本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
3、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
5、A
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据等式的性质把变形为;再根据表格中的数据求解即可.
【详解】
解:关于x的方程变形为,
由表格中的数据可知,当时,;
故选:A.
【点睛】
本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
6、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
7、D
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
8、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
解:如图,
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
9、C
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
10、A
【分析】
根据运算程序,根据绝对值的性质计算即可得答案.
【详解】
∵<3,
∴=,
故选:A.
【点睛】
本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
二、填空题
1、
【解析】
【分析】
首先根据菱形的性质得到,然后由对角线与之比是,可求得,然后根据正弦值的概念求解即可.
【详解】
解:如图所示,
∵在菱形中,
∴
∵对角线与之比是,即
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴设,
∵菱形的对角线互相垂直,即
∴在中,
∴
故答案为:.
【点睛】
此题考查了菱形的性质,勾股定理和三角函数等知识,解题的关键是熟练掌握菱形的性质,勾股定理和三角函数的概念.
2、
【解析】
【分析】
某树主干长出x根枝干,每个枝干又长出x根小分支,则小分支有根,可得主干、枝干和小分支总数为根,再列方程解方程,从而可得答案.
【详解】
解:某树主干长出x根枝干,每个枝干又长出x根小分支,则
解得:
经检验:不符合题意;取
答:主干长出枝干的根数x为
故答案为:
【点睛】
本题考查的是一元二次方程的应用,理解题意,用含的代数式表示主干、枝干和小分支总数是解本题的关键.
3、##
【解析】
【分析】
移项合并化系数为1即可.
【详解】
.
移项合并同类项,得:.
化系数为.
故答案为:.
【点睛】
本题考查一次不等式的解法,掌握一般步骤是关键,属于基础题.
4、-2
【解析】
【分析】
将的值代入原式=计算可得.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:=
将代入,原式==-2
故答案为:-2
【点睛】
本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
5、8
【解析】
【分析】
如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
【详解】
解:如图,连接PB.
∵MN垂直平分线段BC,
∴PC=PB,
∴PA+PC=PA+PB,
∵PA+PB≥AB=BD+DA=5+3=8,
∴PA+PC≥8,
∴PA+PC的最小值为8.
故答案为:8.
【点睛】
本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
三、解答题
1、
(1)见解析
(2)
【分析】
(1)根据关于y轴对称的点的坐标特征,先得到A、B、C关于y轴对称的对应点、、的坐标,然后在坐标系中描出、、三点,最后顺次连接、、三点即可得到答案;
(2)作B关于直线l的对称点,连接与直线l交于点P,点P即为所求.
(1)
解:如图所示,即为所求;
(2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:如图所示,作B关于直线l的对称点,连接与直线l交于点P,点P即为所求,
由图可知点P的坐标为(3,3).
【点睛】
本题主要考查了画轴对称图形,关于y轴对称的点的坐标特征,轴对称—最短路径问题,熟知相关知识是解题的关键.
2、
(1)点E
(2)① 90;② 30或150
(3)N(0,)或(0,- )
【分析】
(1)AE、BE、AB满足勾股定理,且AE=AB,可知为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.
(2)①由半径所对的圆周角为90°即可得出∠AMB为90°.
②连接AP、BP,即可得出为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.
(3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.
(1)
连接AE,BE
∵AE=4,AB=4,AE⊥AB
∴为等腰直角三角形
∴∠AEB=45°.
故使得线段AB的可视角为45°的可视点是点E.
(2)
①有题意可知,此时AB为⊙P直径
由半径所对的圆周角为90°可知∠AMB为90°
②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP
∵BP=AP=4,AB=4
∴为等边三角形
∴∠APB=60°
当点M在圆心一侧由圆周角定理知∠AMB=
当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)
(3)解: ∵过不在同一条直线上的三点确定一个圆,
∴A、B、N三点共圆,且过A、B两点的圆有无数个,圆心在直线x=3上.
即:点N的位置为过A、B两点的圆与y轴的交点.
设过A、B两点的圆为⊙M,半径为r.
当r3时,y轴与⊙M1交于两点,此时y轴与⊙M1相交,交点设为N1、N2.
连接AM、BM、AN、BN、AM1、BM1、AN1、BN1.
此时,∠ANB、∠AMB分别为⊙M中弧AB所对的圆周角和圆心角;
∠AN1B、∠AM1B分别为⊙M1中弧AB所对的圆周角和圆心角.
∵∠1=∠M1AM+∠AM1M,
∠2=∠M1BM+∠BM1M,
∴∠1+∠2=∠M1AM+∠AM1M+∠BM1M+∠M1BM,
即∠AMB=∠M1AM+∠AM1B+∠M1BM
∴∠AMB>∠AM1B
∴∠ANB>∠AN1B
∵∠AN1B=∠AN2B
∴∠ANB>∠AN2B
∴当y轴与⊙M相切于点N时,∠ANB的值最大.
在Rt△AMC中,AM=r=3,AC=2
∴MC=
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵MN⊥y轴,MC⊥AB,
∴四边形OCMN为矩形.
∴ON=MC=
∴N(0,)
同理,当点N在y轴负半轴时,坐标为(0,- )
综述所述,N(0,)或(0,-).
【点睛】
本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
3、,同旁内角互补,两直线平行,,两直线平行,内错角相等,,同位角相等,两直线平行
【分析】
先由,证明,可得,结合已知条件证明,再证明即可.
【详解】
解:证明:∵(已知)
∴(同旁内角互补,两直线平行)
∴.(两直线平行,内错角相等)
∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
【点睛】
本题考查的是平行线的判定与性质,掌握“平行线的判定方法”是解本题的关键.
4、
(1)①见解析;②
(2)3或4
【分析】
(1)① 如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;
②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE,利用相似,证明△ABG是等腰三角形,△ABE是等腰三角形,△BEF是等腰直角三角形,用BE表示GE,后用相似三角形的性质求解即可;
(2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.
(1)
① 如图1,连接CE,DE,
∵点B关于直线CD的对称点为点E,
∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,
∵AC=BC,
∴AC=EC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠AEC=∠ACE,
∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,
∴∠AEC=45°+∠ECD,
∵∠AEC=∠AFC +∠ECD,
∴∠AEC=45°+∠ECD=∠AFC +∠ECD,
∴∠AFC=45°;
②连接BE,交CD于定Q,
根据①得∠EAB =∠DCB,∠AFC=45°,
∵点B关于直线CD的对称点为点E,
∴∠EFC=∠BFC=45°,CF⊥BE,
∴BF⊥AG,△BEF是等腰直角三角形, BF=EF,
∵∠BEG>∠EAB,与 相似,
∴△DCB∽△BGE,
∴∠EAB =∠DCB=∠BGE,∠DBC=∠BEG=45°,
∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,
∴∠EAB=∠EBA=∠BGE,
∴AE=BE=BF=EF,
∵BF⊥AG,
∴AF=FG=AE+EF=BE+EF=BE+BE=BE,
∴GE=EF+FG=BE+BE= BE,
∴=,
∵△DCB∽△BGE,
∴,
∴,
∴BD==,
(2)
过点C作CM⊥AE,垂足为M,
根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,
∴AM=ME,BF⊥AF,
设AM=ME=x,CM=y,
∵AC=BC=5,∠ACB=90°,,
∴,AB=,xy=12,
∴
==49,
∴x+y=7或x+y=-7(舍去);
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
==1,
∴x-y=1或x-y=-1;
∴或
∴或
∴或
∴AE=8或AE=6,
当点D在AB上时,如图3所示,AE=6,
设BF=EF=m,
∴,
∴,
解得m=1,m=-7(舍去),
∴=3;
当点D在AB的延长线上时,如图4所示,AE=8,
设BF=EF=n,
∴,
∴,
解得n=1,n=7(舍去),
∴=4;
∴或.
【点睛】
本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键.
5、
(1)见解析,,
(2)见解析,,
【分析】
(1)由题意依据作轴对称图形的方法作出关于轴对称的,进而即可得出,的坐· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
标;
(2)根据题意作关于轴的对称点,连接两点与轴的交点即为点,进而设直线的解析式为并结合勾股定理进行求解.
(1)
解:如图所示,即为所求.,
(2)
解:如图点即为所求.点关于轴对称点.
设直线的解析式为.
将,代入得
,,
∴直线
当时,.,,
最小.
【点睛】
本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键.
x
-1
0
1
2
3
-8
-4
0
4
8
相关试卷
这是一份【真题汇总卷】湖南省湘潭市中考数学第二次模拟试题(含答案详解),共27页。试卷主要包含了下列函数中,随的增大而减小的是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省衡阳市中考数学历年真题汇总 卷(Ⅲ)(含答案解析),共30页。试卷主要包含了如图,点B,下列各式中,不是代数式的是等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省常德市中考数学历年真题汇总 卷(Ⅲ)(含答案解析),共21页。试卷主要包含了如图,有三块菜地△ACD等内容,欢迎下载使用。