备考练习湖南省张家界市中考数学模拟真题测评 A卷(含答案解析)
展开
这是一份备考练习湖南省张家界市中考数学模拟真题测评 A卷(含答案解析),共26页。试卷主要包含了如图,某汽车离开某城市的距离y,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
A.B.C.D.
2、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
A.19°B.20°C.24°D.25°
3、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
A.1B.2C.3D.0
4、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
A.B.C.D.
5、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
6、有理数在数轴上对应点的位置如图所示,下列结论中正确是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
7、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
8、下列图像中表示是的函数的有几个( )
A.1个B.2个C.3个D.4个
9、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
10、下列各式中,不是代数式的是( )
A.5ab2B.2x+1=7C.0D.4a﹣b
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、观察下列图形,它们是按一定规律排列的,按此规律,第2022个图形中“○”的个数为______.
2、如图,直角三角形AOB的直角边OA在数轴上,AB与数轴垂直,点O与数轴原点重合,点A表示的实数是2,BA=2,以点O为圆心,OB的长为半径画弧,与数轴交于点C,则点C对应的数是_____.
3、若关于的不等式的解集为,则的取值范围为__.
4、如图,,D为外一点,且交的延长线于E点,若,则_______.
5、如图,平分,,,则__.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题(5小题,每小题10分,共计50分)
1、已知:在四边形中,于E,且.
(1)如图1,求的度数;
(2)如图2,平分交于F,点G在上,连接,且.求证:;
(3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
2、在数轴上,点A,B分别表示数a,b,且,记.
(1)求AB的值;
(2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
①请用含t的式子分别写出点P、点Q、点C所表示的数;
②当t的值是多少时,点C到点P,Q的距离相等?
3、解方程:
(1);
(2).
4、如图,,,且,,求A点的坐标.
5、已知,如图,,C为上一点,与相交于点F,连接.,.
(1)求证:;
(2)已知,,,求的长度.
-参考答案-
一、单选题
1、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:∵袋子中共有6个小球,其中白球有3个,
∴摸出一个球是白球的概率是.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:C.
【点睛】
本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
2、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
3、B
【分析】
证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
【详解】
解:∵与都是以A为直角顶点的等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴,故①正确;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∵,
∴,
∴不成立,故②错误;
设BD交CE于M,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵∠ACE+∠DBC=45°,∠ACB=45°,
∴∠BMC=90°,
∴,故③正确,
故选:B.
【点睛】
此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
4、C
【分析】
先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
【详解】
解:由数轴得:.
A、,此项错误;
B、由得:,所以,此项错误;
C、,此项正确;
D、,此项错误;
故选:C.
【点睛】
本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
5、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
6、C
【分析】
利用数轴,得到,,然后对每个选项进行判断,即可得到答案.
【详解】
解:根据数轴可知,,,
∴,故A错误;
,故B错误;
,故C正确;
,故D错误;
故选:C
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了数轴,解题的关键是由数轴得出,,本题属于基础题型.
7、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
8、A
【分析】
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
9、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
10、B
【分析】
根据代数式的定义即可判定.
【详解】
A. 5ab2是代数式;
B. 2x+1=7是方程,故错误;
C. 0是代数式;
D. 4a﹣b是代数式;
故选B.
【点睛】
此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
二、填空题
1、6067
【解析】
【分析】
设第n个图形共有an个○(n为正整数),观察图形,根据各图形中○个数的变化可找出变化规律“an=3n+1(n为正整数)”,依此规律即可得出结论.
【详解】
解:设第n个图形共有an个○(n为正整数).
观察图形,可知:a1=4=3+1=3×1+1,a2=7=6+1=3×2+1,a3=10=9+1=3×3+1,a4=13=12+1=3×4+1,…,
∴an=3n+1(n为正整数),
∴a2022=3×2022+1=6067.
故答案为6067.
【点睛】
本题考查了规律型:图形的变化类,根据各图形中○个数的变化找出变化规律“an=3n+1(n为正整数)”是解题的关键.
2、
【解析】
【分析】
先利用勾股定理求出,再根据作图过程可得,然后根据实数与数轴的关系即可得.
【详解】
解:由题意得:,
,
由作图过程可知,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由数轴的性质可知,点对应的数大于0,
则在数轴上,点对应的数是,
故答案为:.
【点睛】
本题考查了勾股定理、实数与数轴,掌握理解勾股定理是解题关键.
3、
【解析】
【分析】
根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.
【详解】
解:不等式的解集为,
,
.
故答案为:.
【点睛】
本题考查了一元一次不等式的性质,解一元一次不等式,掌握不等式性质,不等式的两边同时乘以或除以一个负数,不等号的方向发生改变是解题关键.
4、2
【解析】
【分析】
过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
【详解】
解:∵DE⊥AC,
∴∠E=∠C=90°,
∴,
过点D作DM⊥CB于M,则∠M=90°=∠E,
∵AD=BD,
∴∠BAD=∠ABD,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAE=∠DBM,
∴△ADE≌△BDM,
∴DM=DE=3,
∵∠E=∠C=∠M =90°,
∴四边形CEDM是矩形,
∴CE=DM=3,
∵AE=1,
∴BC=AC=2,
故答案为:2.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
5、##BC//DE
【解析】
【分析】
由平分,可得,再根据同旁内角互补两直线平行可得结论.
【详解】
解:平分,,
∴=2=110°,
,
∴∠C+∠CDE=70°+110°=180°,
.
故答案为:.
【点睛】
本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.
三、解答题
1、
(1)120°;
(2)见解析;
(3)3.
【分析】
(1)取AD的中点F,连接EF,证明△AEF是等边三角形,进而求得∠B;
(2)作FM⊥BC于M,FN⊥AB于点N,先证明Rt△BFM≌Rt△BFN,再证明Rt△FMG≌Rt△FNA;
(3)连接AG,DF,DG,作FM⊥BC于M,先证明AF=GF=DF,从而得出∠AGH=∠AFD=30°,进而得出∠DGC=∠DFC=120°,从而得出点G、C、D、F共圆,进而得出CA平分∠BCD,接着可证Rt△FMG≌Rt△FHD,△MCF≌△HCF,进而求得GM=CG=DH=,从而得出BM的值,进而求得BF.
(1)
解:如图1,取AD的中点F,连接EF,
∵DE⊥AC,
∴∠AED=90°,
∴AD=2AF=2EF,
∵AD=2AE,
∴AE=EF=AF,
∴∠CAD=60°,
∵∠B+∠CAD=180°,
∴∠B=120°;
(2)
证明:如图2,作FM⊥BC于M,FN⊥AB于点N,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠BMF=∠BNF=90°,∠GMF=∠ANF=90°,
∵BF平分∠ABC,
∴FM=FN,
在Rt△BFM和Rt△BFN中,
,
∴Rt△BFM≌Rt△BFN(HL),
∴BM=BN,
在Rt△FMG和Rt△FNA中,
,
∴Rt△FMG≌Rt△FNA(HL),
∴MG=NA,
∴BN+NA=BM+MG,
∴AB=BG.
(3)
如图3,
连接AG,DF,DG,作FM⊥BC于M,延长GF交AD于N,
∵AF=AD,∠DAE=60°,
∴△ADF是等边三角形,
∴∠AFD=60°,AF=DF,
∵GF=AF,∠DFC=180°-∠AFD=120°,
∴AF=GF=DF,
∴∠FGD=∠FDG,∠FAG=∠FGA,
∴∠AGD=∠AFN+∠DFN=∠AFD=×60°=30°,
∵∠ADC=120°,AD=DG,
∴∠DGA=∠DAG==30°,
∴∠DGC=180°-∠DGA-∠AGD=180°-30°-30°=120°,
∴∠DGC=∠DFC,
∵∠1=∠2,
∴180°-∠DGC-∠1=180°-∠DFC-∠2,
∴∠GCF=∠FDG,∠DCF=∠FGD,
∴∠GCF=∠DCF,
∵FH⊥CD,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴FM=FH,
∵∠FMG=∠FHD=90°,
∴Rt△FMG≌Rt△FHD(HL),
∴DH=MG,
同理可得:△MCF≌△HCF(HL),
∴CM=CH=2CG,
∴GM=CG=DH,
∴3CG=CD=,
∴GM=CG=,
∴BM=BG-GM=AB-GM=5-=,
在Rt△BFM中,∠BFM=90°-∠FBM=90°-60°=30°,
∴BF=2BM=3.
【点睛】
本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质等知识,解决问题的关键是正确作出辅助线.
2、
(1)
(2)①点所表示的数为,点所表示的数为,点所表示的数为;②或
【分析】
(1)先根据绝对值的非负性求出的值,再代入计算即可得;
(2)①根据“路程=速度时间”、结合数轴的性质即可得;
②根据建立方程,解方程即可得.
(1)
解:,
,
解得,
;
(2)
解:①由题意,点所表示的数为,
点所表示的数为,
点所表示的数为;
②,,
由得:,
即或,
解得或,
故当或时,点到点的距离相等.
【点睛】
本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键.
3、
(1)x=2;
(2)x=-1
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
(1)根据一元一次方程的解法解答即可;
(2)根据一元一次方程的解法解答即可.
(1)
解:去括号,得:8-4x+12=6x,
移项、合并同类项,得:-10x=-20,
化系数为1,得:x=2;
(2)
解:去分母,得:3(2x+3)-(x-2)=6,
去括号,得:6x+9-x+2=6,
移项、合并同类项,得:5x=-5,
化系数为1,得:x=-1;
【点睛】
本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
4、A点的坐标为(,)
【分析】
根据题意作AM⊥x轴于M,BN⊥AM于N.只要证明△ABN≌△CAM(AAS),即可推出AM=BN,AN=CM,设OM=a,则CM=5-a,BN=AM=3+a,根据MN=AM-AN,列出方程即可解决问题.
【详解】
解:作AM⊥x轴于M,BN⊥AM于N,
∵∠BAC=90°,
∴∠MAB+∠CAN=90°,
∵∠MAB+∠ABN=90°,
∴∠ABN=∠CAM,
在△ABN和△CAM中,
,
∴△ABN≌△CAM(AAS),
∴AM=BN,AN=CM,
∵,,
设OM=a,则CM=5-a,BN=AM=3+a,
∴MN=AM-AN,
5=3+a-(5-a),
∴a=,
∴OM=,AM=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴A点的坐标为(,).
【点睛】
本题考查全等三角形的判定和性质以及平面直角坐标系点的特征,正确作出辅助线构建全等三角形是解题的关键.
5、(1)证明见解析;(2)
【分析】
(1)先证明再结合证明 从而可得结论;
(2)先证明 再证明 从而利用等面积法可得的长度.
【详解】
解:(1) ,
而
(2) ,,,
【点睛】
本题考查的是三角形的外角的性质,平行线的性质与判定,勾股定理的逆定理的应用,证明是解本题的关键.
相关试卷
这是一份备考练习广西来宾市中考数学模拟真题测评 A卷(含答案及详解),共30页。
这是一份【真题汇总卷】湖南省中考数学模拟真题测评 A卷(含答案详解),共26页。试卷主要包含了一元二次方程的根为等内容,欢迎下载使用。
这是一份真题解析湖南省岳阳市中考数学模拟真题测评 A卷(含答案解析),共32页。试卷主要包含了下列图形是全等图形的是等内容,欢迎下载使用。