【真题汇总卷】湖南省邵阳县中考数学模拟专项测试 B卷(含答案详解)
展开这是一份【真题汇总卷】湖南省邵阳县中考数学模拟专项测试 B卷(含答案详解),共24页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、代数式的意义是( )
A.a与b的平方和除c的商B.a与b的平方和除以c的商
C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
2、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A.B.C.D.
3、下列等式变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
4、不等式的最小整数解是( )
A.B.3C.4D.5
5、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
A.B.C.D.
6、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
A.B.C.D.
7、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A.B.C.D.
8、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.28B.54C.65D.75
9、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
10、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,正方形 边长为 ,则 _____________
2、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
3、2020年10月,华为推出了高端手机,它搭载的麒麟9900芯片是全球第一颗,也是唯一一颗采用5纳米工艺制造的,集成了153亿个晶体管,比苹果的芯片多了,是目前世界上晶体管最多、功能最完整的.其中“153亿”这个数据用科学记数法可以表示为__.
4、已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
5、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
(1)由图2可得等式:________;
(2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
三、解答题(5小题,每小题10分,共计50分)
1、已知的负的平方根是,的立方根是3,求的四次方根.
2、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)①请补全条形统计图;
②求出扇形统计图中表示“及格”的扇形的圆心角度数.
(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
3、解方程:.
4、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
(1)求抛物线的对称轴及B点的坐标
(2)如果,求抛物线的表达式;
(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
5、已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为 E,ED的延长线与AC 的延长线交于点F,
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为4,∠F =30°,求DE的长.
-参考答案-
一、单选题
1、D
【分析】
(a+b)2表示a与b的和的平方,然后再表示除以c的商.
【详解】
解:代数式的意义是a与b的和的平方除以c的商,
故选:D.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题主要考查了代数式的意义,关键是根据计算顺序描述.
2、C
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
3、D
【分析】
根据等式的性质即可求出答案.
【详解】
解:A.a=b的两边都加5,可得a+5=b+5,原变形正确,故此选项不符合题意;
B.a=b的两边都除以3,可得,原变形正确,故此选项不符合题意;
C.的两边都乘6,可得,原变形正确,故此选项不符合题意;
D.由|a|=|b|,可得a=b或a=−b,原变形错误,故此选项符合题意.
故选:D.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.
4、C
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
5、D
【分析】
根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
【详解】
解:在Rt△ABC中,AB=,
∴点B所走过的路径长为=
故选D.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
6、B
【分析】
科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
【详解】
故选:B
【点睛】
本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
7、D
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
∴.
在中,,即,
又∵为的切线,
∴,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得或0(不合题意舍去).
故选D.
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
8、B
【分析】
一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
【详解】
设中间的数是x,则上面的数是x-7,下面的数是x+7,
则这三个数的和是(x-7)+x+(x+7)=3x,
∴3x=28,
解得:不是整数,
故选项A不是;
∴3x=54,
解得: ,
中间的数是18,则上面的数是11,下面的数是28,
故选项B是;
∴3x=65,
解得: 不是整数,
故选项C不是;
∴3x=75,
解得:,
中间的数是25,则上面的数是18,下面的数是32,
日历中没有32,
故选项D不是;
所以这三个数的和可能为54,
故选B.
【点睛】
本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
9、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
10、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、##
【解析】
【分析】
根据正方形的性质可得,过E作EG⊥BC于G,证明三角形EGC是等腰直角三角形,再根据直角三角形BEG利用勾股定理列方程即可.
【详解】
过E作EG⊥BC于G
∵正方形 边长为2
∴,
∵
∴
∴三角形EGC是等腰直角三角形
∴,
在Rt△BEG中,
∴
解得:
∴
∴
【点睛】
本题考查正方形的性质及勾股定理,解题的关键是证明三角形EGC是等腰直角三角形,最终根据勾股定理列方程计算即可.
2、<
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
找到二次函数对称轴,根据二次函数的增减性即可得出结论.
【详解】
解:∵y=﹣2(x﹣1)2+3,
∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
∴在x<1时,y随x的增大而增大,
∵x1<x2<0,
∴y1<y2.
故答案为:<.
【点睛】
本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
3、
【解析】
【分析】
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
【详解】
153亿.
故答案为:.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
4、##
【解析】
【分析】
根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.
【详解】
解:由于P为线段AB=2的黄金分割点,且AP是较长线段;
则AP=2×=,
故答案为:.
【点睛】
本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.
5、 2
【解析】
【分析】
(1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
(2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
【详解】
解:(1)方法一:图形的面积为,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
方法二:图形的面积为,
则由图2可得等式为,
故答案为:;
(2),
,
,
利用(1)的结论得:,
,
,即,
,
,
故答案为:2.
【点睛】
本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
三、解答题
1、
【分析】
根据的负的平方根是,的立方根是3,可以求得、的值,从而可以求得所求式子的四次方根.
【详解】
解:的负的平方根是,的立方根是3,
,
解得,,
,
的四次方根是,
即的四次方根是.
【点睛】
本题考查平方根、立方根,以及二元一次方程组的解法,解答本题的关键是明确题意,求出、的值.
2、
(1)100名
(2)①见解析;②
(3)1440名
【分析】
(1)用不及格的人数除以不及格的人数占比即可得到总人数;
(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:由题意得抽取的学生人数为:(名);
(2)
解:①由题意得:良好的人数为:(名),
∴优秀的人数为:(名),
∴补全统计图如下所示:
②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
(3)
解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
3、
【分析】
去分母,移项合并同类项,系数化为1即可求解.
【详解】
.
去分母得:.
去括号得:
移项合并同类项得:.
系数化为1得:.
【点睛】
本题考查一元一次方程的解法,先去分母、移项合并、化系数为1.属于基础题.
4、
(1)对称轴是,B(4,0)
(2)y=
(3)F( ,-5)
【分析】
(1)根据二次函数抛物线的性质,可求出对称轴,即可得B点的坐标;
(2)二次函数的y轴平行于对称轴,根据平行线分线段成比例用含a的代数式表示DE的长,MD= ,可表示M的纵坐标,然后把M的横坐标代入y=ax2−3ax−4a,可得到关于a的方程,求出a的值,即可得答案;
(3)先证△AOC∽△COB,得∠BCO=∠CAO,再求出∠CAO=∠CFB,得△AGC∽△FGB,根据相似三角形对于高的比等于相似比,可得答案.
(1)
解:∵二次函数y=ax2−3ax−4a,
∴对称轴是 ,
∵A(−1,0),
∵1+1.5=2.5,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴1.5+2.5=4,
∴B(4,0);
(2)
∵二次函数y=ax2−3ax−4a,C在y轴上,
∴C的横坐标是0,纵坐标是−4a,
∵y轴平行于对称轴,
∴ ,
∴,
∵ ,
∵MD=,
∵M的纵坐标是+
∵M的横坐标是对称轴x,
∴ ,
∴+=,
解这个方程组得: ,
∴y=ax2−3ax−4a= x2-3×()x-4×()=;
(3)
假设F点在如图所示的位置上,连接AC、CF、BF,CF与AB相交于点G,
由(2)可知:AO=1,CO=2,BO=4,
∴ ,
∴,
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴∠BCO=∠CAO,
∵∠CFB=∠BCO,
∴∠CAO=∠CFB,
∵∠AGC=∠FGB,
∴△AGC∽△FGB,
∴ ,
设EF=x,
∵BF2=BE2+EF2= ,AC2=22+12=5,CO2=22=4,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴= ,
解这个方程组得:x1=5,x2=-5,
∵点F在线段BC的下方,
∴x1=5(舍去),
∴F(,-5).
【点睛】
本题考查了二次函数的性质、平行线分线段成比例、一元一次方程的解法、一元二次方程方程的解法、相似三角形的判定与性质,做题的关键是相似三角形的判定与性质的灵活运用.
5、
(1)见解析
(2)
【分析】
(1)连接AD、OD,根据等腰三角形的性质和圆周角定理可证得∠EAD=∠ODA,根据平行线在判定与性质可证得OD⊥DE,然后根据切线的判定即可证得结论;
(2)根据含30°角的直角三角形的性质求得OF、DF,再根据平行线分线段成比例求解即可.
(1)
证明:连接AD、OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AC是⊙O的直径,
∴∠ADC=90°即AD⊥BC,又AB=AC,
∴∠BAD=∠OAD,
∴∠EAD=∠ODA,
∴OD∥AB,
∵DE⊥AB,
∴OD⊥DE,又OD是半径,
∴DE是⊙O的切线;
(2)
解:在Rt△ODF中,OD=4,∠F=30°,
∴OF=2OD=8,DF= OD= ,
∵OD∥AB,
∴即,
∴.
【点睛】
本题考查等腰三角形的性质、圆周角定理、平行线的判定与性质、切线的判定、含30°角的直角三角形性质、平行线分线段成比例,综合性强,难度适中,熟练掌握相关知识的联系与运用是解答的关键.
相关试卷
这是一份【真题汇总卷】湖南省邵阳县中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共25页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省衡阳市中考数学模拟真题 (B)卷(含答案及详解),共28页。试卷主要包含了下列语句中,不正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省中考数学模拟真题测评 A卷(含答案详解),共26页。试卷主要包含了一元二次方程的根为等内容,欢迎下载使用。