中考数学湖南省岳阳市中考数学三年高频真题汇总 卷(Ⅲ)(含详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A.B.C.D.
2、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
A.19°B.20°C.24°D.25°
3、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
A.B.
C.D.
4、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个B.3个C.4个D.5个
5、一元二次方程的根为( ).
A.B.
C.,D.,
6、有理数在数轴上对应点的位置如图所示,下列结论中正确是( )
A.B.C.D.
7、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.2 个B.3 个C.4 个D.5 个.
8、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③B.①②④C.①③④D.②③④
9、如图,在中,,,,则的度数为( )
A.87°B.88°C.89°D.90°
10、下列方程变形不正确的是( )
A.变形得:
B.方程变形得:
C.变形得:
D.变形得:
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______.
2、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.
3、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
4、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在中,,,.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知中,,射线CD交AB于点D,点E是CD上一点,且,联结BE.
(1)求证:
(2)如果CD平分,求证:.
2、已知四边形 是菱形, , 点 在射线 上, 点 在射线 上,且 .
(1)如图, 如果 , 求证: ;
(2)如图, 当点 在 的延长线上时, 如果 , 设 , 试建立 与 的函数关系式,并写出 的取值范围
(3)联结 , 当 是等腰三角形时,请直接写出 的长.
3、如图,在中,,.
(1)尺规作图:
①作边的垂直平分线交于点,交于点;
②连接,作的平分线交于点;(要求:保留作图痕迹,不写作法)
(2)在(1)所作的图中;求的度数.
解:∵垂直平分线段,
∴,(_________)(填推理依据)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,(__________)(填推理依据)
∵,∴,
∵,
∴__________,
∴__________,
∵平分,
∴__________.
4、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
(1)如图1,求的度数;
(2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
(3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
5、某演出票价为110元/人,若购买团体票有如下优惠:
例如:200人作为一个团体购票,则需要支付票款元.甲、乙两个班全体学生准备去观看该演出,如果两个班作为一个团体去购票,则应付票款10065元.请列方程解决下列问题:
(1)已知两个班总人数超过100人,求两个班总人数;
(2)在(1)条件下,若甲班人数多于50人.乙班人数不足50人,但至少25人,如果两个班单独购票,一共应付票款11242元.求甲、乙两班分别有多少人?
-参考答案-
一、单选题
1、C
【分析】
根据合并同类项法则解答即可.
【详解】
解:A、3x和4y不是同类项,不能合并,故A选项错误;
B、,故B选项错误;
C、,故C选项正确;
D、,故D选项错误,
故选:C.
【点睛】
本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
2、B
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
3、A
【分析】
整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】
∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:A.
【点睛】
此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
4、C
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
5、A
【分析】
根据方程特点,利用直接开平方法,先把方程两边开方,即可求出方程的解.
【详解】
解:,
两边直接开平方,得,
则.
故选:A.
【点睛】
此题主要考查了直接开平方法解一元二次方程,解题的关键是掌握直接开平方法的基本步骤及方法.
6、C
【分析】
利用数轴,得到,,然后对每个选项进行判断,即可得到答案.
【详解】
解:根据数轴可知,,,
∴,故A错误;
,故B错误;
,故C正确;
,故D错误;
故选:C
【点睛】
本题考查了数轴,解题的关键是由数轴得出,,本题属于基础题型.
7、C
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
8、B
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
9、A
【分析】
延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
【详解】
解:延长DB至E,使BE=AB,连接AE,
∴∠BAE=∠E,
∵,
∴∠BAE=∠E=31°,
∵AB+BD=CD
∴BE+BD=CD
即DE=CD,
∵AD⊥BC,
∴AD垂直平分CE,
∴AC=AE,
∴∠C=∠E=31°,
∴;
故选:A.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
10、D
【分析】
根据等式的性质解答.
【详解】
解:A. 变形得:,故该项不符合题意;
B. 方程变形得:,故该项不符合题意;
C. 变形得:,故该项不符合题意;
D. 变形得:,故该项符合题意;
故选:D.
【点睛】
此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.
二、填空题
1、##0.25
【解析】
【分析】
由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得.
【详解】
解:从4位同学中选取1位共有4种等可能结果,
其中选中甲同学的只有1种结果,
∴恰好选中乙同学的概率为,
故答案为:.
【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
2、
【解析】
【分析】
如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.
【详解】
解:如图,过点B向AO作垂线交点为C,O到AB的距离为h
∵,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
故答案为:.
【点睛】
本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.
3、140
【解析】
【分析】
先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
【详解】
解:由题意,可得∠AOB=40°,
则∠AOB的补角的大小为:180°−∠AOB=140°.
故答案为:140.
【点睛】
本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
4、12
【解析】
【分析】
证明Rt△AIC≌Rt△CGK,得到AI=CG,利用勾股定理结合面积法求得CG=,进一步计算即可求解.
【详解】
解:过点A作AI⊥BC于点I,
∵正方形ACKL,∴∠ACK=90°,AC=CK,
∴∠ACI+∠KCG=90°,∠ACI+∠CAI=90°,
∴Rt△AIC≌Rt△CGK,
∴AI=CG,
∵,,.
∴BC=5,
∵,
∴AI=,则CG=,
∵正方形BCDE,
∴CD=BC=5,
∴长方形CDPG的面积为5.
故答案为:12.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
.
【点睛】
本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键.
5、(-3,9)
【解析】
【分析】
设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
【详解】
解:设长方形纸片的长为x,宽为y,
依题意,得:,
解得:,
∴x-y=3,x+2y=9,
∴点A的坐标为(-3,6).
故答案为:(-3,9).
【点睛】
本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
三、解答题
1、
(1)见解析;
(2)见解析
【分析】
(1)先根据相似三角形的判定证明△ADE∽△CDB,则可证得即,再根据相似三角形的判定即可证得结论;
(2)根据角平分线定义和相似三角形的性质证明∠DCB=∠EAB=∠EBA=45°,则△AEB为等腰直角三角形,根据勾股定理可得AB2=2BE2,再根据相似三角形的判定证明△EBD∽△ECB即可证得结论.
(1)
证明:∵,∠ADE=∠CDB,
∴△ADE∽△CDB,
∴即,又∠ADC=∠EDB,
∴;
(2)
证明:∵CD平分,∠ACB=90°,
∴∠ACD=∠DCB=45°,
∵△ADE∽△CDB,,
∴∠DCB=∠EAD=∠EBD=45°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴AE=BE,∠AEB=90°,
∴△AEB为等腰直角三角形,
∴AB2=AE2+BE2=2BE2,
∵∠DCB =∠EBD,∠CEB =∠BED,
∴△CEB∽△BED,
∴即,
∴AB2=2BE2=2ED·EC.
【点睛】
本题主要考查相似三角形的判定与性质、角平分线的定义、三角形内角和定理、等腰直角三角形的判定、勾股定理,熟练掌握相似三角形的判定与性质是解答的关键.
2、
(1)证明过程详见解答;
(2)
(3)或
【分析】
(1)先证明四边形是正方形,再证明,从而命题得证;
(2)在上截取,先证明是正三角形,再证明,进一步求得结果;
(3)当时,作于,以为圆心,为半径画弧交于,作于,证明,,可推出,再证明,可推出,从而求得,当时,作于,以为圆心,为半径画弧交于,作于,作于,先根据求得,进而求得,根据,,和,从而求得,根据三角形三边关系否定,从而确定的结果.
(1)
解:证明:四边形是菱形,,
菱形是正方形,
,,
,
,
;
(2)
解:如图1,
在上截取,
四边形是菱形,
,,
是正三角形,
,,
,,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
;
(3)
如图2,
当时,作于,以为圆心,为半径画弧交于,作于,
,,,,
,
四边形是菱形,
,
,,
,
①,
,
,
,
②,
由①②得,
,
,
如图3,
当时,作于,以为圆心,为半径画弧交于,作于,
作于,
,
,
由得,
,
,
,
由第一种情形知:,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,
①,②,
由①②得,
,
,
,
,
即,
综上所述:或.
【点睛】
本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.
3、(1)①图见解析;②图见解析;(2)线段垂直平分线上的点到这条线段两个端点的距离相等,等边对等角,110,80,40.
【分析】
(1)①根据线段垂直平分线的尺规作图即可得;
②先连接,再根据角平分线的尺规作图即可得;
(2)先根据线段垂直平分线的性质可得,再根据等腰三角形的性质可得,然后根据三角形的内角和定理可得,从而可得,最后根据角平分线的定义即可得.
【详解】
解:(1)①作边的垂直平分线交于点,交于点如图所示:
②连接,作的平分线交于点如图所示:
(2)∵垂直平分线段,
∴,(线段垂直平分线上的点到这条线段两个端点的距离相等)
∴,(等边对等角)
∵,
∴,
∵,
∴,
∴,
∵平分,
∴.
【点睛】
本题考查了线段垂直平分线和角平分线的尺规作图、线段垂直平分线的性质、等腰三角形的性质等知识点,熟练掌握尺规作图和线段垂直平分线的性质是解题关键.
4、
(1)22.5°;
(2)d=2t;
(3)5
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
(1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
(2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
(3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
(1)
解:∵和关于y轴对称,
∴∠ABO=∠CBO,
∴∠ABC=2,
∵,
∴∠A=3,
∵∠A+=90°,
∴=22.5°;
(2)
解:∵和关于y轴对称,
∴∠BAO=∠BCO,
∵,
∴OD=5t,AD=6t,
∵,
∴∠ADP=∠BCO,
∴∠ADP=∠BAO,
∴AP=DP,
过点P作PH⊥AD于H,则AH=DH=3t,
∴OH=AH-AO=2t,
∴d=2t;
(3)
解:∵=22.5°,∠ABC=2=45°,AB=BC,
∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
∵,
∴∠APE=,∠AEP=45°,
∴∠EAP=∠DPQ=,
∵AP=DP,AE=PQ,
∴△EAP≌△QPD,
∴∠PDQ=∠APE=,
∴∠ODQ=90°,
连接DQ,过P作PM⊥y轴于M,
∵∠AEP=45°,
∴∠MPF=∠MFP=45°,
∴MF=MP,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵,MP=2t,
∴,
∵∠APE=,∠PBF=∠ABO=,
∴∠PBF=∠APE,
∴BF=,
∵,
∴,
得t=1,
∴OA=1,OD=5,
∴点Q的横坐标为5.
【点睛】
此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.
5、
(1)人
(2)甲班有人,乙班有人.
【分析】
(1)设两个班总人数为人,再根据各段费用之和为10065元,列方程,再解方程即可;
(2)设乙班有人,则甲班有人,当时,则 再列方程 再解方程可得答案.
(1)
解:设两个班总人数为人,则
整理得:
解得:
答:两个班总人数为人.
(2)
解:设乙班有人,则甲班有人,
当时,则
整理得:
解得:
答:甲班有人,乙班有人.
【点睛】
本题考查的是一元一次方程的应用,最优化选择问题,分段计费问题,理解题意,确定相等关系列方程是解本题的关键.
购票人数
不超过50人的部分
超过50人,但不超过100人的部分
超过100人的部分
优惠方案
无优惠
每线票价优惠20%
每线票价优惠50%
中考数学湖南省岳阳市中考数学历年真题汇总 卷(Ⅲ)(含详解): 这是一份中考数学湖南省岳阳市中考数学历年真题汇总 卷(Ⅲ)(含详解),共22页。
【真题汇总卷】湖南省汨罗市中考数学三年高频真题汇总卷(含详解): 这是一份【真题汇总卷】湖南省汨罗市中考数学三年高频真题汇总卷(含详解),共37页。试卷主要包含了下列等式变形中,不正确的是,单项式的次数是,如图,有三块菜地△ACD,下列图形是全等图形的是等内容,欢迎下载使用。
【真题汇总卷】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共21页。试卷主要包含了下列图形是全等图形的是等内容,欢迎下载使用。