终身会员
搜索
    上传资料 赚现金

    中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解)

    立即下载
    加入资料篮
    中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解)第1页
    中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解)第2页
    中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解)

    展开

    这是一份中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解),共30页。试卷主要包含了如图,在中,,,,则的度数为,下列方程变形不正确的是,一元二次方程的根为.等内容,欢迎下载使用。


    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
    A.30km/hB.60km/hC.70km/hD.90km/h
    2、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
    A.3B.C.4D.
    3、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
    A.abB.a+bC.abD.a
    4、如图,在中,,,,则的度数为( )
    A.87°B.88°C.89°D.90°
    5、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
    A.B.C.D.
    6、下列方程变形不正确的是( )
    A.变形得:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    B.方程变形得:
    C.变形得:
    D.变形得:
    7、一元二次方程的根为( ).
    A.B.
    C.,D.,
    8、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
    A.B.C.D.
    9、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
    A.3个B.4个C.5个D.6个
    10、为了完成下列任务,你认为最适合采用普查的是( )
    A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
    C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,请你计算墨迹盖住的所有整数的和为______.
    2、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
    3、两个相似多边形的周长比是3:4,其中较小的多边形的面积为,则较大的多边形的面积为______cm2.
    4、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
    5、如图,过的重心G作分别交边AC、BC于点E、D,联结AD,如果AD平分,,那么______.
    三、解答题(5小题,每小题10分,共计50分)
    1、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)本次调查共抽取了多少名学生?
    (2)①请补全条形统计图;
    ②求出扇形统计图中表示“及格”的扇形的圆心角度数.
    (3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
    2、已知:在四边形中,于E,且.
    (1)如图1,求的度数;
    (2)如图2,平分交于F,点G在上,连接,且.求证:;
    (3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
    3、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
    (1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
    (2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
    (3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
    4、如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.
    (1)求A,B两点的坐标;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)求BD的长;
    (3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.
    5、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
    (1)如图1,求的度数;
    (2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
    (3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
    -参考答案-
    一、单选题
    1、B
    【分析】
    直接观察图象可得出结果.
    【详解】
    解:根据函数图象可知:t=1时,y=90;
    ∵汽车是从距离某城市30km开始行驶的,
    ∴该汽车行驶的速度为90-30=60km/h,
    故选:B.
    【点睛】
    本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
    2、D
    【分析】
    勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
    【详解】
    解:∵,,,
    ∴,
    ∵,D是BC的中点,垂足为D,
    ∴BE=CE,
    故选:D.
    【点睛】
    本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
    3、B
    【分析】
    先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
    【详解】
    解:∵△ABC、△ADE都是等边三角形,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵AF=CF,
    ∴∠ABD=∠CBD=∠ACE=30°,
    ∴点E在射线CE上运动(∠ACE=30°),
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
    ∵CA=CM,∠ACM=60°,
    ∴△ACM是等边三角形,
    ∴△ACM≌△ACB,
    ∴FM=FB=b,
    ∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
    故选:B.
    【点睛】
    此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
    4、A
    【分析】
    延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
    【详解】
    解:延长DB至E,使BE=AB,连接AE,
    ∴∠BAE=∠E,
    ∵,
    ∴∠BAE=∠E=31°,
    ∵AB+BD=CD
    ∴BE+BD=CD
    即DE=CD,
    ∵AD⊥BC,
    ∴AD垂直平分CE,
    ∴AC=AE,
    ∴∠C=∠E=31°,
    ∴;
    故选:A.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
    5、B
    【分析】
    根据题意可知,中午的气温是,然后计算即可.
    【详解】
    解:由题意可得,
    中午的气温是:°C,
    故选:.
    【点睛】
    本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
    6、D
    【分析】
    根据等式的性质解答.
    【详解】
    解:A. 变形得:,故该项不符合题意;
    B. 方程变形得:,故该项不符合题意;
    C. 变形得:,故该项不符合题意;
    D. 变形得:,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.
    7、A
    【分析】
    根据方程特点,利用直接开平方法,先把方程两边开方,即可求出方程的解.
    【详解】
    解:,
    两边直接开平方,得,
    则.
    故选:A.
    【点睛】
    此题主要考查了直接开平方法解一元二次方程,解题的关键是掌握直接开平方法的基本步骤及方法.
    8、C
    【分析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    解:∵袋子中共有6个小球,其中白球有3个,
    ∴摸出一个球是白球的概率是.
    故选:C.
    【点睛】
    本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    现m种结果,那么事件A的概率P(A)=.
    9、C
    【分析】
    根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
    【详解】
    解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
    所以上层至少1块,底层2行至少有3+1=4块,
    所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
    故选:C
    【点睛】
    本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
    10、D
    【分析】
    普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
    【详解】
    解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
    B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
    C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
    D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    二、填空题
    1、-10
    【解析】
    【详解】
    解:结合数轴,得墨迹盖住的整数共有−6,−5,−4,−3,−2,1,2,3,4,
    以上这些整数的和为:-10
    故答案为:-10
    【点睛】
    本题主要考查数轴,解题的关键是熟练掌握数轴的定义.
    2、<
    【解析】
    【分析】
    找到二次函数对称轴,根据二次函数的增减性即可得出结论.
    【详解】
    解:∵y=﹣2(x﹣1)2+3,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
    ∴在x<1时,y随x的增大而增大,
    ∵x1<x2<0,
    ∴y1<y2.
    故答案为:<.
    【点睛】
    本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
    3、64
    【解析】
    【分析】
    根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.
    【详解】
    解:∵两个相似多边形的周长比是3:4,
    ∴两个相似多边形的相似比是3:4,
    ∴两个相似多边形的面积比是9:16,
    ∵较小多边形的面积为36cm2,
    ∴较大多边形的面积为64cm2,
    故答案为:64.
    【点睛】
    本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.
    4、4m+12##12+4m
    【解析】
    【分析】
    根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
    【详解】
    解:由面积的和差,得
    长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
    由长方形的宽为3,可得长方形的长是(2m+3),
    长方形的周长是2[(2m+3)+3]=4m+12.
    故答案为:4m+12.
    【点睛】
    本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
    5、8
    【解析】
    【分析】
    由重心的性质可以证明,再由AD平分和可得DE=AE,最后根据得到即可求出EC.
    【详解】
    连接CG并延长与AB交于H,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵G是的重心



    ∴,,


    ∵AD平分



    ∴,

    【点睛】
    本题考查三角形的重心的性质、相似三角形的性质与判定、平行线分线段成比例,解题的关键是利用好平行线得到多个结论.
    三、解答题
    1、
    (1)100名
    (2)①见解析;②
    (3)1440名
    【分析】
    (1)用不及格的人数除以不及格的人数占比即可得到总人数;
    (2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
    (3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
    (1)
    解:由题意得抽取的学生人数为:(名);
    (2)
    解:①由题意得:良好的人数为:(名),
    ∴优秀的人数为:(名),
    ∴补全统计图如下所示:
    ②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
    (3)
    解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
    【点睛】
    本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、
    (1)120°;
    (2)见解析;
    (3)3.
    【分析】
    (1)取AD的中点F,连接EF,证明△AEF是等边三角形,进而求得∠B;
    (2)作FM⊥BC于M,FN⊥AB于点N,先证明Rt△BFM≌Rt△BFN,再证明Rt△FMG≌Rt△FNA;
    (3)连接AG,DF,DG,作FM⊥BC于M,先证明AF=GF=DF,从而得出∠AGH=∠AFD=30°,进而得出∠DGC=∠DFC=120°,从而得出点G、C、D、F共圆,进而得出CA平分∠BCD,接着可证Rt△FMG≌Rt△FHD,△MCF≌△HCF,进而求得GM=CG=DH=,从而得出BM的值,进而求得BF.
    (1)
    解:如图1,取AD的中点F,连接EF,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴AD=2AF=2EF,
    ∵AD=2AE,
    ∴AE=EF=AF,
    ∴∠CAD=60°,
    ∵∠B+∠CAD=180°,
    ∴∠B=120°;
    (2)
    证明:如图2,作FM⊥BC于M,FN⊥AB于点N,
    ∴∠BMF=∠BNF=90°,∠GMF=∠ANF=90°,
    ∵BF平分∠ABC,
    ∴FM=FN,
    在Rt△BFM和Rt△BFN中,

    ∴Rt△BFM≌Rt△BFN(HL),
    ∴BM=BN,
    在Rt△FMG和Rt△FNA中,

    ∴Rt△FMG≌Rt△FNA(HL),
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴MG=NA,
    ∴BN+NA=BM+MG,
    ∴AB=BG.
    (3)
    如图3,
    连接AG,DF,DG,作FM⊥BC于M,延长GF交AD于N,
    ∵AF=AD,∠DAE=60°,
    ∴△ADF是等边三角形,
    ∴∠AFD=60°,AF=DF,
    ∵GF=AF,∠DFC=180°-∠AFD=120°,
    ∴AF=GF=DF,
    ∴∠FGD=∠FDG,∠FAG=∠FGA,
    ∴∠AGD=∠AFN+∠DFN=∠AFD=×60°=30°,
    ∵∠ADC=120°,AD=DG,
    ∴∠DGA=∠DAG==30°,
    ∴∠DGC=180°-∠DGA-∠AGD=180°-30°-30°=120°,
    ∴∠DGC=∠DFC,
    ∵∠1=∠2,
    ∴180°-∠DGC-∠1=180°-∠DFC-∠2,
    ∴∠GCF=∠FDG,∠DCF=∠FGD,
    ∴∠GCF=∠DCF,
    ∵FH⊥CD,
    ∴FM=FH,
    ∵∠FMG=∠FHD=90°,
    ∴Rt△FMG≌Rt△FHD(HL),
    ∴DH=MG,
    同理可得:△MCF≌△HCF(HL),
    ∴CM=CH=2CG,
    ∴GM=CG=DH,
    ∴3CG=CD=,
    ∴GM=CG=,
    ∴BM=BG-GM=AB-GM=5-=,
    在Rt△BFM中,∠BFM=90°-∠FBM=90°-60°=30°,
    ∴BF=2BM=3.
    【点睛】
    本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质等知识,解决问题的关键是正确作出辅助线.
    3、
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)12%.补图见解析
    (2)270
    (3)12.5%
    【分析】
    (1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;
    (2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;
    (3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.
    (1)
    解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:
    故答案为:12%.
    (2)
    解:调查的总人数为:120÷24%=500(人),
    参加过滑雪的人数为:500×54%=270(人),
    故答案为:270
    (3)
    解:体验过滑冰的人数为:500×48%=240(人),
    (270-240)÷240=12.5%,
    体验过滑雪的人比体验过滑冰的人多12.5%.
    【点睛】
    本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.
    4、
    (1),
    (2)
    (3),,,,,,,
    【分析】
    (1)先根据一次函数图象的平移可得直线的函数解析式,再分别求出时的值、时的值即可得;
    (2)设点的坐标为,从而可得,再根据线段垂直平分线的判定与性质可得,建立方程求出的值,由此即可得;
    (3)分①点在轴上,②点在轴上两种情况,分别根据建立方程,解方程即可得.
    (1)
    解:由题意得:直线的函数解析式为,
    当时,,解得,即,
    当时,,即;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    解:设点的坐标为,
    ,,
    点为线段的中点,,
    垂直平分,
    ,即,
    解得,
    则;
    (3)
    解:由题意,分以下两种情况:
    ①当点在轴上时,设点的坐标为,
    则,


    (Ⅰ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或;
    (Ⅱ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或(与点重合,舍去);
    (Ⅲ)当时,为等腰三角形,
    则,解得,
    此时点的坐标为;
    ②当点在轴上时,设点的坐标为,
    则,


    (Ⅰ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或(与点重合,舍去);
    (Ⅱ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或;
    (Ⅲ)当时,为等腰三角形,
    则,解得,
    此时点的坐标为;
    综上,所有满足条件的点的坐标为,,,,,,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,.
    【点睛】
    本题考查了一次函数图象的平移、线段垂直平分线的判定与性质、等腰三角形、两点之间的距离公式等知识点,较难的是题(3),正确分情况讨论是解题关键.
    5、
    (1)22.5°;
    (2)d=2t;
    (3)5
    【分析】
    (1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
    (2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
    (3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
    (1)
    解:∵和关于y轴对称,
    ∴∠ABO=∠CBO,
    ∴∠ABC=2,
    ∵,
    ∴∠A=3,
    ∵∠A+=90°,
    ∴=22.5°;
    (2)
    解:∵和关于y轴对称,
    ∴∠BAO=∠BCO,
    ∵,
    ∴OD=5t,AD=6t,
    ∵,
    ∴∠ADP=∠BCO,
    ∴∠ADP=∠BAO,
    ∴AP=DP,
    过点P作PH⊥AD于H,则AH=DH=3t,
    ∴OH=AH-AO=2t,
    ∴d=2t;
    (3)
    解:∵=22.5°,∠ABC=2=45°,AB=BC,
    ∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
    ∵,
    ∴∠APE=,∠AEP=45°,
    ∴∠EAP=∠DPQ=,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵AP=DP,AE=PQ,
    ∴△EAP≌△QPD,
    ∴∠PDQ=∠APE=,
    ∴∠ODQ=90°,
    连接DQ,过P作PM⊥y轴于M,
    ∵∠AEP=45°,
    ∴∠MPF=∠MFP=45°,
    ∴MF=MP,
    ∵,MP=2t,
    ∴,
    ∵∠APE=,∠PBF=∠ABO=,
    ∴∠PBF=∠APE,
    ∴BF=,
    ∵,
    ∴,
    得t=1,
    ∴OA=1,OD=5,
    ∴点Q的横坐标为5.
    【点睛】
    此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.

    相关试卷

    【真题汇总卷】湖南省新化县中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解):

    这是一份【真题汇总卷】湖南省新化县中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解),共25页。试卷主要包含了和按如图所示的位置摆放,顶点B,生活中常见的探照灯,下列等式变形中,不正确的是等内容,欢迎下载使用。

    【真题汇总卷】湖南省武冈市中考数学三年高频真题汇总卷(含答案及详解):

    这是一份【真题汇总卷】湖南省武冈市中考数学三年高频真题汇总卷(含答案及详解),共26页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。

    【真题汇总卷】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解):

    这是一份【真题汇总卷】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共21页。试卷主要包含了下列图形是全等图形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map