终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考专题贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含详解)

    立即下载
    加入资料篮
    中考专题贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含详解)第1页
    中考专题贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含详解)第2页
    中考专题贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考专题贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含详解)

    展开

    这是一份中考专题贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含详解),共29页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
    A.B.C.D.
    2、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
    A.B.C.D.
    3、下列图形中,能用,,三种方法表示同一个角的是( )
    A.B.
    C.D.
    4、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
    A.1B.2C.3D.0
    5、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
    A.B.C.D.
    6、如图,①,②,③,④可以判定的条件有( ).
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.①②④B.①②③C.②③④D.①②③④
    7、如图,于点,于点,于点,下列关于高的说法错误的是( )
    A.在中,是边上的高B.在中,是边上的高
    C.在中,是边上的高D.在中,是边上的高
    8、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.4米B.10米C.4米D.12米
    9、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
    A.B.C.D.
    10、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
    A.B.
    C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,,,BE是高,且点D,F分别是边AB,BC的中点,则的周长等于______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
    3、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.
    4、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
    5、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
    (1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
    ①直线;②双曲线;③抛物线.
    (2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
    (3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
    2、已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为 E,ED的延长线与AC 的延长线交于点F,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)求证:DE是⊙O的切线;
    (2)若⊙O的半径为4,∠F =30°,求DE的长.
    3、(1)如图1,四边形ABCD是矩形,以对角线AC为直角边作等腰直角三角形EAC,且.请证明:;
    (2)图2,在矩形ABCD中,,,点P是AD上一点,且,连接PC,以PC为直角边作等腰直角三角形EPC,,设,,请求出y与x的函数关系式;
    (3)在(2)的条件下,连接BE,若点P在线段AD上运动,在点P的运动过程中,当是等腰三角形时,求AP的长.
    4、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在ABC中,若AB2AC2ABACBC2,则ABC是“和谐三角形”.
    (1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).
    (2)若RtABC中,C90,ABc,ACb,BCa,且ba,若ABC 是“和谐三角形”,求a:b:c.
    5、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
    求证:
    (1);
    (2).
    -参考答案-
    一、单选题
    1、A
    【分析】
    首先把点A坐标代入,求出k的值,再联立方程组求解即可
    【详解】
    解:把A代入,得:
    ∴k=4
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    联立方程组
    解得,
    ∴点B坐标为(-2,-2)
    故选:A
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
    2、D
    【分析】
    根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
    【详解】
    解:在△AEF和△ABC中,

    ∴△AEF≌△ABC(SAS),
    ∴AF=AC,∠AFE=∠C,
    ∴∠C=∠AFC,
    ∴∠EFC=∠AFE+∠AFC=2∠C.
    故选:D.
    【点睛】
    本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
    3、A
    【分析】
    根据角的表示的性质,对各个选项逐个分析,即可得到答案.
    【详解】
    A选项中,可用,,三种方法表示同一个角;
    B选项中,能用表示,不能用表示;
    C选项中,点A、O、B在一条直线上,
    ∴能用表示,不能用表示;
    D选项中,能用表示,不能用表示;
    故选:A.
    【点睛】
    本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
    4、B
    【分析】
    证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
    【详解】
    解:∵与都是以A为直角顶点的等腰直角三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴△BAD≌△CAE,
    ∴,故①正确;
    ∵△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵∠ABD+∠DBC=45°,
    ∴∠ACE+∠DBC=45°,
    ∵,
    ∴,
    ∴不成立,故②错误;
    设BD交CE于M,
    ∵∠ACE+∠DBC=45°,∠ACB=45°,
    ∴∠BMC=90°,
    ∴,故③正确,
    故选:B.
    【点睛】
    此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
    5、B
    【分析】
    科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
    【详解】
    故选:B
    【点睛】
    本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
    6、A
    【分析】
    根据平行线的判定定理逐个排查即可.
    【详解】
    解:①由于∠1和∠3是同位角,则①可判定;
    ②由于∠2和∠3是内错角,则②可判定;
    ③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
    ④①由于∠2和∠5是同旁内角,则④可判定;
    即①②④可判定.
    故选A.
    【点睛】
    本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    7、C
    【详解】
    解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
    B、在中,是边上的高,该说法正确,故本选项不符合题意;
    C、在中,不是边上的高,该说法错误,故本选项符合题意;
    D、在中,是边上的高,该说法正确,故本选项不符合题意;
    故选:C
    【点睛】
    本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
    8、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为﹣4,
    ∵水面AB宽为20米,
    ∴A(﹣10,﹣4),B(10,﹣4),
    将A代入y=ax2,
    ﹣4=100a,
    ∴a=﹣,
    ∴y=﹣x2,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为﹣1,
    ∴﹣1=﹣x2,
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
    9、B
    【分析】
    根据三角形的中线的定义判断即可.
    【详解】
    解:∵AD、BE、CF是△ABC的三条中线,
    ∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
    故A、C、D都不一定正确;B正确.
    故选:B.
    【点睛】
    本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    10、C
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
    B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
    C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、20
    【解析】
    【分析】
    由题意易AF⊥BC,则有,然后根据直角三角形斜边中线定理可得,进而问题可求解.
    【详解】
    解:∵,F是边BC的中点,
    ∴AF⊥BC,
    ∵BE是高,
    ∴,
    ∵点D,F分别是边AB,BC的中点,,,
    ∴,
    ∴;
    故答案为20.
    【点睛】
    本题主要考查等腰三角形的性质及直角三角形斜边中线定理,熟练掌握等腰三角形的性质及直角三角形斜边中线定理是解题的关键.
    2、70
    【解析】
    【分析】
    如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
    【详解】
    解:如图,由三角形的内角和定理得:,
    图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,

    故答案为:70.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
    3、35°##35度
    【解析】
    【分析】
    根据方向角的表示方法可得答案.
    【详解】
    解:如图,

    ∵城市C在城市A的南偏东60°方向,
    ∴∠CAD=60°,
    ∴∠CAF=90°-60°=30°,
    ∵∠BAC=155°,
    ∴∠BAE=155°-90°-30°=35°,
    即城市B在城市A的北偏西35°,
    故答案为:35°.
    【点睛】
    本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
    4、140
    【解析】
    【分析】
    先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
    【详解】
    解:由题意,可得∠AOB=40°,
    则∠AOB的补角的大小为:180°−∠AOB=140°.
    故答案为:140.
    【点睛】
    本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
    5、3
    【解析】
    【分析】
    根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.
    【详解】
    解:设反比例函数的解析式是,
    设点是反比例函数图象上一点,
    矩形的面积为3,

    即,
    故答案为:3.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.
    三、解答题
    1、
    (1)①
    (2)的取值范围是
    (3)或
    【分析】
    (1)根据图形M与图形N是双联图形的定义可直接判断即可;
    (2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
    (3)根据双联图形的宝座进行判断即可.
    (1)
    选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
    又的半径为2,
    ∴这两个图形有且只有两个公共点,
    ∴这两个图形是“双联图形”;
    选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
    故这两个图形不是“双联图形”;
    选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,
    故这两个图形不是“双联图形”;
    ∴选①
    故答案为①;
    (2)
    已知直线与抛物线有且只有两个公共点,
    ∴将代入抛物线中,得,
    配方得,
    ∵方程有实数解,
    ∴即
    又直线不是双曲线的“双联图形”,
    ∴直线与双曲线最多有一个公共点,
    即当时,代入得,,即,
    ∴实数的取值范围是;
    (3)
    ∵是二次函数,

    ∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
    ∴当时,二次函数的图象与的图象没有交点,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴不成立;
    当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
    ∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
    把C(1,4),B(4,0)代入,得

    ∴,
    ∴y=-x+4,
    ∵抛物线与BC不想交,
    ∴,即ax2+(2a+1)x+a-1=0无实数根,
    ∴(2a+1)2-4a(a-1)

    相关试卷

    中考专题贵州省中考数学历年真题汇总 卷(Ⅲ)(含答案详解):

    这是一份中考专题贵州省中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共24页。试卷主要包含了如图,E,下列方程变形不正确的是,利用如图①所示的长为a等内容,欢迎下载使用。

    【真题汇总卷】贵州省铜仁市中考数学历年真题汇总 (A)卷(含答案及详解):

    这是一份【真题汇总卷】贵州省铜仁市中考数学历年真题汇总 (A)卷(含答案及详解),共30页。试卷主要包含了下列各式中,不是代数式的是等内容,欢迎下载使用。

    【高频真题解析】贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含答案详解):

    这是一份【高频真题解析】贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共28页。试卷主要包含了如图,有三块菜地△ACD,单项式的次数是,如图,E,如图,在中,,,,则的度数为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map