所属成套资源:2024年人教版数学七年级下册精品同步练习
初中数学人教版七年级下册5.4 平移综合训练题
展开
这是一份初中数学人教版七年级下册5.4 平移综合训练题,共13页。试卷主要包含了4 平移,下列几种运动中属于平移的有,实践与操作等内容,欢迎下载使用。
基础过关全练
知识点1 平移及其性质
1.下列几种运动中属于平移的有( )
①弹珠在地上滚动;②荡秋千运动;③操场上红旗的飘动;④教室可移动黑板的上下移动;⑤笔直起飞中飞机的运动.
A.4种 B.3种
C.2种 D.1种
2.(2023北京海淀期末)下列图案中,可以由一个基本图形通过平移得到的是(M7205008)( )
A B C D
3.(2022福建泉州晋江期末)如图,Rt△ABC沿AB的方向平移到Rt△DEF的位置,则平移的距离是 ( )
A.线段AD B.线段BE的长度
C.线段CG的长度 D.线段GF的长度
4.【一题多变·根据平移性质求线段长】(2023四川南充中考)如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是(M7205008)( )
A.2 B.2.5
C.3 D.5
[变式·已知平移距离求线段长]如图,将△ABC沿BC方向平移4 cm,得到△DEF,若BF=5CE,则BC= cm.
5.(2022广东汕头澄海期末)如图,台阶的宽度为2 m,高度AC=3 m,水平距离BC=4 m,现要在台阶上铺满地毯,则地毯的面积为( )
A.6 m2 B.12 m2
C.14 m2 D.16 m2
6.【教材变式·P31T4】【一题多解】如图,∠ACB=90°,将直角△ABC沿BC方向平移5 cm,得到△A'B'C',若BC=3 cm,AC=4 cm,则阴影部分的面积为 .
知识点2 平移作图
7.(2023山西吕梁孝义期中)实践与操作:如图,平移三角形ABC,使点A平移到点A'处,画出平移后的三角形A'B'C'(点B平移到点B'处,点C平移到点C'处).
猜想与推理:猜想AA'与BB'的数量与位置关系为 ,其依据是 .(M7205008)
8.(2022河北承德宽城期末)如图,在由边长为1的小正方形组成的网格中有一个△ABC,按要求进行作图(只用直尺).
(1)画出将△ABC向右平移6格,再向上平移3格后得到的△DEF.
(2)请在图中直接标记出3个使△BCP的面积等于3的格点P1、P2、P3.
能力提升全练
9.(2022河北石家庄桥西模拟,7,★☆☆)一块电脑主板的示意图如图(单位:mm),其中每个角都是直角,则这块主板的周长是( )
A.48 mm B.80 mm C.96 mm D.100 mm
10.【一题多变·已知四边形周长求三角形周长】(2023河北邯郸三模,4,★★☆)如图,把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,若四边形ABFD的周长为10,则三角形ABC的周长为(M7205008)( )
A.8 B.10 C.12 D.14
[变式·已知三角形周长求四边形周长](2022吉林长春二道期末,6,★★☆)如图,将△ABC沿BC方向平移3 cm,得到△DEF,点E落在线段BC上.若△ABC的周长为10 cm,则四边形ABFD的周长为( )
A.20 cm B.13 cm C.16 cm D.24 cm
11.(2023安徽合肥包河期末,13,★★☆)如图,∠1=68°,直线a平移后得到直线b,则∠2-∠3=(M7205008)( )
A.78° B.132° C.118° D.112°
12.(2022安徽安庆四中期末,8,★★☆)如图,将三角形ABC沿着XY方向平移一定的距离得到三角形MNL,则下列结论:①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
13.【易错题】(2023河北石家庄裕华期中,16,★★☆)如图,在三角形ABC中,BC=8 cm.将三角形ABC沿BC所在直线向右平移一定的距离得到三角形DEF,若要使AD=3CE成立,则平移的距离是( )
A.6 cm B.9 cm
C.6 cm或12 cm D.9 cm或12 cm
14.(2022浙江台州中考,14,★★☆)如图,△ABC的边BC的长为4 cm.将△ABC平移2 cm得到△A'B'C',且BB'⊥BC,则阴影部分的面积为
cm2.
15.(2022云南昆明安宁期末,22,★★☆)如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).
(1)在图①中,过点P作AB的平行线,并过点P作点P到直线AB的垂线段.
(2)在图②中,通过平移线段AB、CD、EF(可不全平移),使相应线段围成一个三角形(三个顶点均在格点上),请在图②中画出一个这样的三角形,并求出所画三角形的面积.
图① 图②
素养探究全练
16.【几何直观】(2023安徽六安霍邱期末)如图,长方形ABCD的对角线AC=5,AB=3,BC=4,则图中五个小长方形的周长之和为( )
A.7 B.9 C.14 D.18
17.【项目式学习试题】【推理能力】联想与探索:
在图①中,将线段A1A2向右平移1个单位得到线段B1B2,从而得到封闭图形A1A2B2B1(即阴影部分);在图②中,将折线A1A2A3向右平移1个单位得到折线B1B2B3,从而得到封闭图形A1A2A3B3B2B1(即阴影部分).
(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用阴影表示.
(2)设上述三个图形中,除去阴影部分后剩余部分的面积分别为S1、S2、S3(长方形的长均为a个单位,宽均为b个单位),则S1= ,S2= ,S3= .
(3)如图④,在一块长方形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是2个单位,长方形的长为a个单位,宽为b个单位),请你求出空白部分表示的草地的面积.
(4)如图⑤,若在(3)的草地上又有一条横向的弯曲小路(小路任何地方的竖直宽度都是1个单位),请你求出空白部分表示的草地的面积.
答案全解全析
基础过关全练
1.C ④⑤属于平移.故选C.
2.D选项D可以由其中一个小三角形平移得到整个图案,故选D.
3.B平移的距离是长度,而不是线段,选项中只有线段BE的长度是平移的距离,故选B.
4.A由平移的性质可知,CF=BE=2,故选A.
[变式] 83
解析 由平移的性质可得,BE=CF=4 cm,
∵BF=BE+EF=4+(CF-CE)=4+4-CE=5CE,
∴CE=43 cm,∴BC=BE-CE=4-43=83(cm).
5.C由题意得地毯的面积为(3+4)×2=14(m2).
6.14 cm2
解析 解法一(看作梯形求面积):
根据平移的性质,得AA'=BB'=5 cm,
∵BC=3 cm,∴CB'=BB'-BC=5-3=2(cm),
∴阴影部分的面积为12(CB'+AA')·AC=12×(2+5)×4=14(cm2).
解法二(和差法求面积):阴影部分的面积为S平行四边形ABB'A'-S△ABC=BB'·AC-12BC·AC=5×4-12×3×4=14(cm2).
7.解析 实践与操作:如图,△A'B'C'即为所求.
猜想与推理:猜想AA'与BB'的数量与位置关系为AA'=BB',AA'∥BB',
其依据是连接平移前后图形各组对应点的线段平行(或在同一条直线上)且相等.
8.解析 (1)如图,△DEF即为所求.
(2)如图,P1、P2、P3即为所求(答案不唯一).
能力提升全练
9.C由题意得(16+24)×2+4×4=40×2+16=96(mm),
∴这块主板的周长是96 mm,故选C.
10.A∵把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,∴AD=BE=1,DF=AC,EF=BC.
∵四边形ABFD的周长为10,∴AD+BF+AB+DF=10.∵BF=BE+EF=1+EF,∴1+1+EF+AB+DF=10,即EF+AB+DF=8,
∵DF=AC,EF=BC,
∴BC+AB+AC=8,
∴三角形ABC的周长为8.故选A.
[变式] C ∵△ABC沿BC方向平移3 cm得到△DEF,
∴DF=AC,AD=CF=3 cm,
∵△ABC的周长为10 cm,即AB+BC+AC=10 cm,
∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=10+3+3=16(cm),即四边形ABFD的周长为16 cm,故选C.
11.D如图,
∵直线a平移后得到直线b,∴a∥b.
∴∠1+∠4=180°.∵∠1=68°,∴∠4=112°.
∴∠5+∠6=180°-∠4=68°,
∵∠3=∠5,∴∠6+∠3=68°,即∠6=68°-∠3,
∵∠2+∠6=180°,
∴∠2+68°-∠3=180°,
∴∠2-∠3=112°.
12.B由平移的性质可知,AM∥BN,AM=BN,BC=NL,∠ACB=∠MLN,∴结论①②正确,③④错误,故选B.
13.C①当点E平移至点C右侧时,
∵AD=BE=BC+CE=3CE,∴BC=2CE,∵BC=8 cm,∴CE=4 cm,∴AD=12 cm,∴平移的距离是12 cm;
②当点E平移至点B,C之间时,∵AD=BE=3CE,
∴BC=BE+CE=BE+13BE=43BE,
∵BC=8 cm,∴BE=6 cm,∴AD=6 cm,
∴平移的距离是6 cm.
综上,平移的距离是12 cm或6 cm.故选C.
易错点 本题容易被所给图形误导,漏掉点E在点C右侧的情况.
14.8
解析 由平移可知,阴影部分的面积等于四边形BB'C'C的面积=BC·BB'=4×2=8(cm2).
15.解析 (1)如图①,直线PM,垂线段PN即为所求作的图形.
图①
图②
(2)答案不唯一,如图②,三角形ABG即为所求作的图形,三角形ABG的面积=3×4-12×2×4−12×1×2−12×2×3=4.
素养探究全练
16.C由平移可知题图中五个小长方形的周长之和等于长方形ABCD的周长,
所以题图中五个小长方形的周长之和=2(AB+BC)=2×(3+4)=14.故选C.
17.解析 (1)如图(答案不唯一).
(2)S1=(a-1)b,S2=(a-1)b,S3=(a-1)b.(提示:去掉阴影部分,则剩余部分可以拼成一个长方形)
(3)所求面积为(a-2)b.
(4)所求面积为(a-2)(b-1).
相关试卷
这是一份人教版七年级下册5.4 平移课时作业,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版七年级下册5.4 平移当堂检测题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版七年级下册5.4 平移测试题,共11页。试卷主要包含了下列运动属于平移的是,下列运动不是平移的是,以下现象等内容,欢迎下载使用。