|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023年四川省宜宾市中考数学试卷
    立即下载
    加入资料篮
    2023年四川省宜宾市中考数学试卷01
    2023年四川省宜宾市中考数学试卷02
    2023年四川省宜宾市中考数学试卷03
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年四川省宜宾市中考数学试卷

    展开
    这是一份2023年四川省宜宾市中考数学试卷,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1.(4分)2的相反数是
    A.B.C.2D.
    2.(4分)下列计算正确的是
    A.B.
    C.D.
    3.(4分)下列图案中,既是轴对称图形,又是中心对称图形的是
    A.B.
    C.D.
    4.(4分)为积极践行节能减排的发展理念,宜宾大力推进“电动宜宾”工程,2022年城区已建成充电基础设施接口超过8500个.将8500用科学记数法表示为
    A.B.C.D.
    5.(4分)如图,,且,,则等于
    A.B.C.D.
    6.(4分)“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有只,兔有只,则所列方程组正确的是
    A.B.
    C.D.
    7.(4分)如图,已知点,,在上,为的中点.若,则等于
    A.B.C.D.
    8.(4分)分式方程的解为
    A.2B.3C.4D.5
    9.(4分)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点为圆心、为半径的圆弧,是的中点..“会圆术”给出的弧长的近似值计算公式:.当,时,则的值为
    A.B.C.D.
    10.(4分)如图,边长为6的正方形中,为对角线上的一点,连接并延长交于点,若,则的长为
    A.B.C.D.
    11.(4分)如图,在平面直角坐标系中,点、分别在、轴上,轴,点、分别在线段、上,,,反比例函数的图象经过、两点,为轴正半轴上一点,且,的面积为3,则的值为
    A.B.C.D.
    12.(4分)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:①;②;③当点在的延长线上时,;④在旋转过程中,当线段最短时,的面积为.其中正确结论有
    A.1个B.2个C.3个D.4个
    二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.
    13.(4分)在“庆五四展风采”的演讲比赛中,7位同学参加决赛,演讲成绩依次为:77,80,79,77,80,79,80.这组数据的中位数是 .
    14.(4分)分解因式: .
    15.(4分)若关于的方程两根的倒数和为1,则的值为 .
    16.(4分)若关于的不等式组所有整数解的和为14,则整数的值为 .
    17.(4分)如图,是正方形边的中点,是正方形内一点,连接,线段以为中心逆时针旋转得到线段,连接.若,,则的最小值为 .
    18.(4分)如图,抛物线经过点,顶点为,且抛物线与轴的交点在与之间(不含端点),则下列结论:①当时,;②当的面积为时,;③当为直角三角形时,在内存在唯一一点,使得的值最小,最小值的平方为.其中正确的结论是 .(填写所有正确结论的序号)
    三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(10分)(1)计算:.
    (2)化简:.
    20.(10分)已知:如图,,,.求证:.
    21.(10分)某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理,绘制如图所示的不完整统计图.根据图表信息回答以下问题:
    (1)九年级1班的学生共有 人,补全条形统计图;
    (2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;
    (3)已知类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.
    22.(10分)渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图,桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离,如图2.在桥面上点处,测得到左桥墩的距离米,左桥墩所在塔顶的仰角,左桥墩底的俯角,求的长度.(结果精确到1米.参考数据:,
    23.(12分)如图,在平面直角坐标系中,等腰直角三角形的直角顶点,顶点、恰好落在反比例函数第一象限的图象上.
    (1)分别求反比例函数的表达式和直线所对应的一次函数的表达式;
    (2)在轴上是否存在一点,使周长的值最小.若存在,求出最小值;若不存在,请说明理由.
    24.(12分)如图,以为直径的上有两点、,,过点作直线交的延长线于点,交的延长线于点,过作平分交于点,交于点.
    (1)求证:是的切线;
    (2)求证:;
    (3)如果是的中点,且,求的长.
    25.(14分)如图,抛物线与轴交于点、,且经过点.
    (1)求抛物线的表达式;
    (2)在轴上方的抛物线上任取一点,射线、分别与抛物线的对称轴交于点、,点关于轴的对称点为,求的面积;
    (3)点是轴上一动点,当最大时,求的坐标.
    2023年四川省宜宾市中考数学试卷
    参考答案与试题解析
    一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.
    1.【解答】解:2的相反数是,
    故选:.
    2.【解答】解:.,则不符合题意;
    .,则符合题意;
    .与不是同类项,无法合并,则不符合题意;
    .与不是同类项,无法合并,则不符合题意;
    故选:.
    3.【解答】解:、该图形是轴对称图形,但不是中心对称图形,故本选项不符合题意;
    、该图形是中心对称图形,但不是轴对称图形,故本选项不符合题意;
    、该图形既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    、该图形是中心对称图形,也是轴对称图形,故本选项符合题意.
    故选:.
    4.【解答】解:,
    故选:.
    5.【解答】解:,

    ,,


    故选:.
    6.【解答】解:由题意得:,
    故选:.
    7.【解答】解:连接,如图:


    为的中点.



    故选:.
    8.【解答】解:两边同时乘以得:,
    解得,
    把代入最简公分母得:

    是原方程的解,
    故选:.
    9.【解答】解:连接,如图:
    是以为圆心,为半径的圆弧,是的中点,,

    ,,共线,
    ,,
    是等边三角形,
    ,,



    故选:.
    10.【解答】解:以为原点,所在直线为轴建立直角坐标系,如图:
    正方形边长为6,
    ,,,
    由,可得直线解析式为,
    设,
    由,得直线解析式为,
    在中,令得,




    整理得,
    解得(不符合题意,舍去)或,
    ,,

    故选:.
    方法




    ,,
    ,,

    在中,,,

    由正方形对称性知,
    故选:.
    11.【解答】解:如图,过点作轴于点,过作轴交轴于,交于,
    设,,,,
    ,,
    ,,,,
    ,,



    ,,

    解得,

    ,,

    的面积为3,



    将点, 代入得:

    整理得:,
    将代入得:,


    故选:.
    12.【解答】解:和是以点为直角顶点的等腰直角三角形,
    ,,,


    ,,故①正确;
    设,,

    ,故②正确;
    当点在的延长线上时,如图:
    同理可得,



    ,,
    ,,

    ,故③正确;
    ④以为圆心,为半径画圆,如图:

    当在的下方与相切时,的值最小,


    四边形是正方形,


    ,,



    的面积为,故④正确,
    故选:.
    二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.
    13.【解答】解:将这组数据从小到大排列为:77,77,79,79,80,80,80,位置在中间的数是79,
    这组数据的中位数是79;
    故答案为:79.
    14.【解答】解:,


    故答案为:.
    15.【解答】解:设关于的方程两根为,,
    ,,
    两根的倒数和为1,



    解得,
    经检验,是分式方程的解,
    当时,原方程为,
    △,
    符合题意,
    故答案为:2.
    16.【解答】解:,
    解不等式①得:,
    解不等式②得:,

    所有整数解的和为14,
    不等式组的整数解为5,4,3,2或5,4,3,2,1,0,,
    或,
    或,
    为整数,
    或,
    故答案为:2或.
    17.【解答】解:连接,将绕逆时针旋转得,连接,,如图:
    ,,

    ,,共线,

    由旋转性质得,,


    的运动轨迹是以为圆心,1为半径的弧,
    ,,

    ,,



    的最小值为.
    故答案为:.
    18.【解答】解:①抛物线经过点,顶点为,
    抛物线的对称轴为直线,
    抛物线与轴的另一个交点坐标为,
    抛物线的开口向上,
    当时,;故①正确.
    ②将,代入,得,
    解得:,

    抛物线的顶点为,
    设抛物线对称轴交轴于,如图,
    则,
    ,,,





    ;故②正确.
    ③,,,
    ,,,
    若,则,
    即,
    解得:,或(舍去);
    若,则,
    即,
    解得:,或(舍去);
    若,则,
    即,
    整理得:(无解);
    点在与之间(不含端点),



    ,,
    如图,将绕点逆时针旋转得到△,连接,过点作轴于点,作轴于点,
    ,,,
    和是等边三角形,
    ,,

    当点,点,点,点共线时,值最小,最小值为,
    此时,
    设,
    则,,,,
    在△中,,
    在△中,,
    即,
    解得:,

    故③错误;
    故答案为:①②.
    三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.【解答】解:(1)原式

    (2)原式

    20.【解答】证明:,
    ,即,


    在和中,



    21.【解答】解:(1)(人,
    九年级1班的学生共有50人;
    的人数为(人,
    的人数为(人,
    补全条形统计图如下:
    故答案为:50;
    (2)(人,
    估计周末在家劳动时间在3小时及以上的学生人数为208人;
    (3)列树状图如下:
    由图可知,一共有20中等可能的情况,其中恰为一男一女的情况有12种,
    所抽的两名学生恰好是一男一女的概率是.
    22.【解答】解:过作于,如图:

    是等腰直角三角形,
    ,,(米,
    是等腰直角三角形,
    ,,


    设米,则米,
    米,米,

    解得,

    米,
    (米,
    的长度约为54米.
    23.【解答】解:(1)过作轴于,过作轴于,如图:
    是等腰直角三角形,
    ,,



    ,,
    ,,
    ,,


    ,恰好落在反比例函数第一象限的图象上,

    ,,
    反比例函数的表达式为,,,
    设直线所对应的一次函数的表达式为,把,代入得:

    解得,
    直线所对应的一次函数的表达式为;
    (2)在轴上存在一点,使周长的值最小,理由如下:
    作关于轴的对称点,连接交轴于,如图:
    ,,

    当最小时,周长最小,
    ,关于轴对称,

    当,,共线时,最小,周长也最小,
    ,,


    周长的最小值为.
    24.【解答】(1)证明:连接,如图:








    是的半径,
    是的切线;
    (2)证明:如图:
    由(1)知是的切线,
    (弦切角定理),
    平分,




    (3)解:如图:
    由(2)知,,




    是的中点,

    ,,
    ,,



    在中,,




    的长为6.
    25.【解答】解:(1)把、,代入得:

    解得,
    抛物线的表达式为;
    (2)设抛物线的对称轴交轴于,如图:
    抛物线与轴交于点、,
    抛物线的对称轴为直线,


    设,
    设的函数表达式为,把,代入得:

    解得,
    的函数表达式为,
    在中,令得,

    同理可得,
    关于轴的对称点坐标为,


    的面积为;
    (3)当的外接圆与轴相切时,切点即为使最大的点,如图:
    轴,
    设,则,
    ,,,





    解得或(不符合题意,舍去),


    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/6/28 15:46:10;用户:张雪;邮箱:hxnts67@xyh.cm;学号:37372743类别
    劳动时间
    相关试卷

    2023年四川省宜宾市中考数学试卷: 这是一份2023年四川省宜宾市中考数学试卷,共37页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省宜宾市中考数学试卷(含解析): 这是一份2023年四川省宜宾市中考数学试卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020年四川省宜宾市中考数学试卷: 这是一份2020年四川省宜宾市中考数学试卷,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年四川省宜宾市中考数学试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map