终身会员
搜索
    上传资料 赚现金
    2023中考数学真题专项汇编特训 专题04分式与分式方程(原卷版+解析)
    立即下载
    加入资料篮
    2023中考数学真题专项汇编特训 专题04分式与分式方程(原卷版+解析)01
    2023中考数学真题专项汇编特训 专题04分式与分式方程(原卷版+解析)02
    2023中考数学真题专项汇编特训 专题04分式与分式方程(原卷版+解析)03
    还剩39页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023中考数学真题专项汇编特训 专题04分式与分式方程(原卷版+解析)

    展开
    这是一份2023中考数学真题专项汇编特训 专题04分式与分式方程(原卷版+解析),共42页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题
    1.(2023·湖南·统考中考真题)将关于x的分式方程去分母可得( )
    A.B.C.D.
    2.(2023·湖南郴州·统考中考真题)小王从A地开车去B地,两地相距240km.原计划平均速度为km/h,实际平均速度提高了50%,结果提前1小时到达.由此可建立方程为( )
    A.B.C.D.
    3.(2023·黑龙江绥化·统考中考真题)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )
    A.B.
    C.D.
    4.(2023·广东深圳·统考中考真题)某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x吨,则所列方程正确的是( )
    A.B.C.D.
    5.(2023·云南·统考中考真题)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是米/分,则下列方程正确的是( )
    A.B.C.D.
    6.(2023·甘肃武威·统考中考真题)方程的解为( )
    A.B.C.D.
    7.(2023·上海·统考中考真题)在分式方程中,设,可得到关于y的整式方程为( )
    A.B.C.D.
    8.(2023·天津·统考中考真题)计算的结果等于( )
    A.B.C.D.
    9.(2023·湖北随州·统考中考真题)甲、乙两个工程队共同修一条道路,其中甲工程队需要修9千米,乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米,最终用的时间比甲工程队少半个月.若设甲工程队每个月修x千米,则可列出方程为( )
    A.B.C.D.
    10.(2023·四川内江·统考中考真题)用计算机处理数据,为了防止数据输入出错,某研究室安排两名程序操作员各输入一遍,比较两人的输入是否一致,本次操作需输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x个数据,根据题意得方程正确的是( )
    A.B.
    C.D.
    11.(2023·湖北十堰·统考中考真题)为了落实“双减”政策,进一步丰富文体活动,学校准备购进一批篮球和足球,已知每个篮球的价格比每个足球的价格多20元,用1500元购进篮球的数量比用800元购进足球的数量多5个,如果设每个足球的价格为x元,那么可列方程为( )
    A.B.C.D.
    12.(2023·湖南·统考中考真题)某校组织九年级学生赴韶山开展研学活动,已知学校离韶山50千米,师生乘大巴车前往,某老师因有事情,推迟了10分钟出发,自驾小车以大巴车速度的倍前往,结果同时到达.设大巴车的平均速度为x千米/时,则可列方程为( )
    A.B.C.D.
    13.(2023·四川·统考中考真题)近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a为全程10千米的普通道路,路线b包含快速通道,全程7千米,走路线b比路线a平均速度提高,时间节省10分钟,求走路线a和路线b的平均速度分别是多少?设走路线a的平均速度为x千米/小时,依题意,可列方程为( )
    A.B.
    C.D.
    14.(2023·广东·统考中考真题)计算的结果为( )
    A.B.C.D.
    15.(2023·辽宁大连·统考中考真题)将方程去分母,两边同乘后的式子为( )
    A.B.C.D.
    16.(2023·湖南张家界·统考中考真题)《四元玉鉴》是一部成就辉煌的数学名著,是宋元数学集大成者,也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”.大意是:现请人代买一批椽,这批椽的总售价为文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问文能买多少株椽?设元购买椽的数量为x株,则符合题意的方程是( ).
    A.B.
    C.D.
    17.(2023·黑龙江·统考中考真题)已知关于x的分式方程的解是非负数,则的取值范围是( )
    A.B.C.且D.且
    18.(2023·河南·统考中考真题)化简的结果是( )
    A.0B.1C.aD.
    19.(2023·内蒙古赤峰·统考中考真题)化简的结果是( )
    A.1B.C.D.
    20.(2023·湖北武汉·统考中考真题)已知,计算的值是( )
    A.1B.C.2D.
    21.(2023·山东聊城·统考中考真题)若关于x的分式方程的解为非负数,则m的取值范围是( )
    A.且B.且C.且D.且
    二、填空题
    22.(2023·浙江台州·统考中考真题)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有________人.
    23.(2023·浙江绍兴·统考中考真题)方程的解是________.
    24.(2023·上海·统考中考真题)化简:的结果为________.
    25.(2023·湖南·统考中考真题)已知,则代数式的值为________.
    26.(2023·江苏苏州·统考中考真题)分式方程的解为________________.
    27.(2023·湖南永州·统考中考真题)若关于x的分式方程(m为常数)有增根,则增根是_______.
    28.(2023·黑龙江绥化·统考中考真题)化简:_______.
    29.(2017·江西·南昌市育新学校校联考一模)分式方程的解是_____.
    30.(2023·内蒙古赤峰·统考中考真题)方程的解为___________.
    三、解答题
    31.(2023·湖北黄冈·统考中考真题)化简:.
    32.(2023·辽宁大连·统考中考真题)计算:.
    33.(2023·广东深圳·统考中考真题)先化简,再求值:,其中.
    34.(2022·江苏南京·模拟预测)解方程:.
    35.(2023·四川眉山·统考中考真题)先化简:,再从选择中一个合适的数作为x的值代入求值.
    36.(2023·内蒙古通辽·统考中考真题)以下是某同学化简分式的部分运算过程:
    (1)上面的运算过程中第___________步开始出现了错误;
    (2)请你写出完整的解答过程.
    37.(2023·湖南怀化·统考中考真题)先化简,再从,0,1,2中选择一个适当的数作为a的值代入求值.
    38.(2023·甘肃武威·统考中考真题)化简:.
    39.(2023·山东烟台·统考中考真题)先化简,再求值:,其中是使不等式成立的正整数.
    40.(2023·江苏苏州·统考中考真题)先化简,再求值:,其中.
    41.(2023·湖南永州·统考中考真题)先化简,再求值:,其中.
    42.(2023·湖北随州·统考中考真题)先化简,再求值:,其中.
    43.(2023·湖南·统考中考真题)先化简,再求值:,其中.
    44.(2023·山西·统考中考真题)解方程:.
    45.(2023·湖北宜昌·统考中考真题)先化简,再求值:,其中.
    46.(2023·湖南郴州·统考中考真题)先化简,再求值:,其中.
    47.(2023·广西·统考中考真题)解分式方程:.
    48.(2023·四川·统考中考真题)先化简,再求值:,其中,.
    49.(2023·山东·统考中考真题)先化简,再求值:,其中x,y满足.
    50.(2023·广东·统考中考真题)某学校开展了社会实践活动,活动地点距离学校,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的倍,结果甲比乙早到,求乙同学骑自行车的速度.
    51.(2023·湖南张家界·统考中考真题)先化简,然后从,1,2这三个数中选一个合适的数代入求值.
    52.(2023·四川遂宁·统考中考真题)先化简,再求值:,其中.
    53.(2023·江西·统考中考真题)化简.下面是甲、乙两同学的部分运算过程:
    (1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)
    ①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.
    (2)请选择一种解法,写出完整的解答过程.
    54.(2023·湖南常德·统考中考真题)先化简,再求值:,其中.
    55.(2023·山东枣庄·统考中考真题)先化简,再求值:,其中a的值从不等式组的解集中选取一个合适的整数.
    56.(2023·山东滨州·统考中考真题)先化简,再求值:,其中满足.
    57.(2023·湖南·统考中考真题)先化简,再求值:,其中.
    58.(2023·山东聊城·统考中考真题)先化简,再求值:,其中.
    59.(2023·湖北荆州·统考中考真题)先化简,再求值:,其中,.
    60.(2023·福建·统考中考真题)先化简,再求值:,其中.
    61.(2023·黑龙江·统考中考真题)先化简,再求值:,其中.
    62.(2023·山东·统考中考真题)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少万元,且用万元购买A型充电桩与用万元购买B型充电桩的数量相等.
    (1)A,B两种型号充电桩的单价各是多少?
    (2)该停车场计划共购买个A,B型充电桩,购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?
    专题04 分式与分式方程
    一、单选题
    1.(2023·湖南·统考中考真题)将关于x的分式方程去分母可得( )
    A.B.C.D.
    【答案】A
    【分析】方程两边都乘以,从而可得答案.
    【详解】解:∵,
    去分母得:,
    整理得:,
    故选:A.
    【点睛】本题考查的是分式方程的解法,熟练的把分式方程化为整式方程是解本题的关键.
    2.(2023·湖南郴州·统考中考真题)小王从A地开车去B地,两地相距240km.原计划平均速度为km/h,实际平均速度提高了50%,结果提前1小时到达.由此可建立方程为( )
    A.B.C.D.
    【答案】B
    【分析】设原计划平均速度为km/h,根据实际平均速度提高了50%,结果提前1小时到达,列出分式方程即可.
    【详解】解:设原计划平均速度为km/h,由题意,得:
    ,即:;
    故选:B.
    【点睛】本题考查根据实际问题列方程.找准等量关系,正确得列出方程,是解题的关键.
    3.(2023·黑龙江绥化·统考中考真题)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )
    A.B.
    C.D.
    【答案】B
    【分析】设乙车单独运送这批货物需x天,由题意列出分式方程即可求解.
    【详解】解:设乙车单独运送这批货物需x天,由题意列方程

    故选:B.
    【点睛】本题考查了列分式方程,根据题意找到等量关系列出方程是解题的关键.
    4.(2023·广东深圳·统考中考真题)某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x吨,则所列方程正确的是( )
    A.B.C.D.
    【答案】B
    【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.
    【详解】解:设有大货车每辆运输x吨,则小货车每辆运输吨,
    则.
    故选:B.
    【点睛】本题考查分式方程的应用,理解题意准确找到等量关系是解题的关键.
    5.(2023·云南·统考中考真题)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是米/分,则下列方程正确的是( )
    A.B.C.D.
    【答案】D
    【分析】设乙同学的速度是米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.
    【详解】解∶设乙同学的速度是米/分,可得:
    故选: D.
    【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
    6.(2023·甘肃武威·统考中考真题)方程的解为( )
    A.B.C.D.
    【答案】A
    【分析】把分式方程转化为整式方程求解,然后解出的解要进行检验,看是否为增根.
    【详解】去分母得,
    解方程得,
    检验:是原方程的解,
    故选:A.
    【点睛】本题考查了解分式方程的一般步骤,解题关键是熟记解分式方程的基本思想是“转化思想”,即把分式方程转化为整式方程求解,注意分式方程需要验根.
    7.(2023·上海·统考中考真题)在分式方程中,设,可得到关于y的整式方程为( )
    A.B.C.D.
    【答案】D
    【分析】设,则原方程可变形为,再化为整式方程即可得出答案.
    【详解】解:设,则原方程可变形为,
    即;
    故选:D.
    【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.
    8.(2023·天津·统考中考真题)计算的结果等于( )
    A.B.C.D.
    【答案】C
    【分析】根据异分母分式加减法法则进行计算即可.
    【详解】解:

    故选:C.
    【点睛】本题考查了异分母分式加减法法则,解答关键是按照相关法则进行计算.
    9.(2023·湖北随州·统考中考真题)甲、乙两个工程队共同修一条道路,其中甲工程队需要修9千米,乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米,最终用的时间比甲工程队少半个月.若设甲工程队每个月修x千米,则可列出方程为( )
    A.B.C.D.
    【答案】A
    【分析】设甲工程队每个月修x千米,则乙工程队每个月修千米,根据“最终用的时间比甲工程队少半个月”列出分式方程即可.
    【详解】解:设甲工程队每个月修x千米,则乙工程队每个月修千米,
    依题意得,
    故选:A.
    【点睛】此题主要考查了由实际问题抽象出分式方程,关键是分析题意,找准关键语句,列出相等关系.
    10.(2023·四川内江·统考中考真题)用计算机处理数据,为了防止数据输入出错,某研究室安排两名程序操作员各输入一遍,比较两人的输入是否一致,本次操作需输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x个数据,根据题意得方程正确的是( )
    A.B.
    C.D.
    【答案】D
    【分析】设乙每分钟能输入x个数据,则甲每分钟能输入个数据,根据“甲比乙少用2小时输完”列出分式方程即可.
    【详解】解:设乙每分钟能输入x个数据,则甲每分钟能输入个数据,
    由题意得,
    故选:D.
    【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
    11.(2023·湖北十堰·统考中考真题)为了落实“双减”政策,进一步丰富文体活动,学校准备购进一批篮球和足球,已知每个篮球的价格比每个足球的价格多20元,用1500元购进篮球的数量比用800元购进足球的数量多5个,如果设每个足球的价格为x元,那么可列方程为( )
    A.B.C.D.
    【答案】A
    【分析】设每个足球的价格为x元,则篮球的价格为元,根据“用1500元购进篮球的数量比用800元购进足球的数量多5个”列方程即可.
    【详解】解:设每个足球的价格为x元,则篮球的价格为元,
    由题意可得:,
    故选:A.
    【点睛】本题考查分式方程的应用,正确理解题意是关键.
    12.(2023·湖南·统考中考真题)某校组织九年级学生赴韶山开展研学活动,已知学校离韶山50千米,师生乘大巴车前往,某老师因有事情,推迟了10分钟出发,自驾小车以大巴车速度的倍前往,结果同时到达.设大巴车的平均速度为x千米/时,则可列方程为( )
    A.B.C.D.
    【答案】A
    【分析】设大巴车的平均速度为x千米/时,则老师自驾小车的平均速度为千米/时,根据时间的等量关系列出方程即可.
    【详解】解:设大巴车的平均速度为x千米/时,则老师自驾小车的平均速度为千米/时,
    根据题意列方程为:,
    故答案为:A.
    【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
    13.(2023·四川·统考中考真题)近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a为全程10千米的普通道路,路线b包含快速通道,全程7千米,走路线b比路线a平均速度提高,时间节省10分钟,求走路线a和路线b的平均速度分别是多少?设走路线a的平均速度为x千米/小时,依题意,可列方程为( )
    A.B.
    C.D.
    【答案】A
    【分析】若设路线a时的平均速度为x千米/小时,则走路线b时的平均速度为千米/小时,根据路线b的全程比路线a少用10分钟可列出方程.
    【详解】解:由题意可得走路线b时的平均速度为千米/小时,
    ∴,
    故选:A.
    【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
    14.(2023·广东·统考中考真题)计算的结果为( )
    A.B.C.D.
    【答案】C
    【分析】根据分式的加法运算可进行求解.
    【详解】解:原式;
    故选:C.
    【点睛】本题主要考查分式的运算,熟练掌握分式的运算是解题的关键.
    15.(2023·辽宁大连·统考中考真题)将方程去分母,两边同乘后的式子为( )
    A.B.C.D.
    【答案】B
    【分析】根据解分式方程的去分母的方法即可得.
    【详解】解:,
    两边同乘去分母,得,
    故选:B.
    【点睛】本题考查了解分式方程,熟练掌握去分母的方法是解题关键.
    16.(2023·湖南张家界·统考中考真题)《四元玉鉴》是一部成就辉煌的数学名著,是宋元数学集大成者,也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”.大意是:现请人代买一批椽,这批椽的总售价为文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问文能买多少株椽?设元购买椽的数量为x株,则符合题意的方程是( ).
    A.B.
    C.D.
    【答案】C
    【分析】设元购买椽的数量为x株,根据单价总价数量,求出一株椽的价钱为,再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可列出分式方程,得到答案.
    【详解】解:设元购买椽的数量为x株,则一株椽的价钱为,
    由题意得:,
    故选:C.
    【点睛】本题考查了从实际问题中抽象出分式方程,正确理解题意找出等量关系是解题关键.
    17.(2023·黑龙江·统考中考真题)已知关于x的分式方程的解是非负数,则的取值范围是( )
    A.B.C.且D.且
    【答案】C
    【分析】解分式方程求出,然后根据解是非负数以及解不是增根得出关于m的不等式组,求解即可.
    【详解】解:分式方程去分母得:,
    解得:,
    ∵分式方程的解是非负数,
    ∴,且,
    ∴且,
    故选:C.
    【点睛】本题考查了解分式方程,解一元一次不等式组,正确得出关于m的不等式组是解题的关键.
    18.(2023·河南·统考中考真题)化简的结果是( )
    A.0B.1C.aD.
    【答案】B
    【分析】根据同母的分式加法法则进行计算即可.
    【详解】解:,
    故选:B.
    【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.
    19.(2023·内蒙古赤峰·统考中考真题)化简的结果是( )
    A.1B.C.D.
    【答案】D
    【分析】根据分式的加减混合运算法则即可求出答案.
    【详解】解:
    .
    故选:D.
    【点睛】本题考查了分式的化简,解题的关键在于熟练掌握分式加减混合运算法则.
    20.(2023·湖北武汉·统考中考真题)已知,计算的值是( )
    A.1B.C.2D.
    【答案】A
    【分析】根据分式的加减运算以及乘除运算法则进行化简,然后把代入原式即可求出答案.
    【详解】解:
    =
    =
    =,
    ∵,
    ∴,
    ∴原式==1,
    故选:A.
    【点睛】本题考查分式的混合运算及求值.解题的关键是熟练运用分式的加减运算以及乘除运算法则.
    21.(2023·山东聊城·统考中考真题)若关于x的分式方程的解为非负数,则m的取值范围是( )
    A.且B.且C.且D.且
    【答案】A
    【分析】把分式方程的解求出来,排除掉增根,根据方程的解是非负数列出不等式,最后求出m的范围.
    【详解】解:方程两边都乘以,得:,
    解得:,
    ∵,即:,
    ∴,
    又∵分式方程的解为非负数,
    ∴,
    ∴,
    ∴的取值范围是且,
    故选:A.
    【点睛】本题考查了分式方程的解,根据条件列出不等式是解题的关键,分式方程一定要检验.
    二、填空题
    22.(2023·浙江台州·统考中考真题)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有________人.
    【答案】3
    【分析】审题确定等量关系:第一组平均每人植树棵数=第二组平均每人植树棵数,列方程求解,注意检验.
    【详解】设第一组有x人,则第二组有人,根据题意,得
    去分母,得
    解得,
    经检验,是原方程的根.
    故答案为:3.
    【点睛】本题考查分式方程的应用,审题明确等量关系是解题的关键,注意分式方程的验根.
    23.(2023·浙江绍兴·统考中考真题)方程的解是________.
    【答案】
    【分析】先去分母,左右两边同时乘以,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.
    【详解】解:去分母,得:,
    化系数为1,得:.
    检验:当时,,
    ∴是原分式方程的解.
    故答案为:.
    【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.
    24.(2023·上海·统考中考真题)化简:的结果为________.
    【答案】2
    【分析】根据同分母分式的减法计算法则解答即可.
    【详解】解:;
    故答案为:2.
    【点睛】本题考查了同分母分式减法计算,熟练掌握运算法则是解题关键.
    25.(2023·湖南·统考中考真题)已知,则代数式的值为________.
    【答案】
    【分析】先通分,再根据同分母分式的减法运算法则计算,然后代入数值即可.
    【详解】解:原式=
    故答案为:.
    【点睛】本题主要考查了分式通分计算的能力,解决本题的关键突破口是通分整理.
    26.(2023·江苏苏州·统考中考真题)分式方程的解为________________.
    【答案】
    【分析】方程两边同时乘以,化为整式方程,解方程验根即可求解.
    【详解】解:方程两边同时乘以,
    解得:,
    经检验,是原方程的解,
    故答案为:.
    【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.
    27.(2023·湖南永州·统考中考真题)若关于x的分式方程(m为常数)有增根,则增根是_______.
    【答案】
    【分析】根据使分式的分母为零的未知数的值,是方程的增根,计算即可.
    【详解】∵关于x的分式方程(m为常数)有增根,
    ∴,
    解得,
    故答案为:.
    【点睛】本题考查了分式方程的解法,增根的理解,熟练掌握分式方程的解法是解题的关键.
    28.(2023·黑龙江绥化·统考中考真题)化简:_______.
    【答案】
    【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简即可求解.
    【详解】解:

    故答案为:.
    【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.
    29.(2017·江西·南昌市育新学校校联考一模)分式方程的解是_____.
    【答案】
    【分析】根据解分式方程的步骤计算即可.
    【详解】去分母得:,
    解得:,
    经检验是方程的解,
    故答案为:.
    【点睛】本题考查解分式方程,正确计算是解题的关键,注意要检验.
    30.(2023·内蒙古赤峰·统考中考真题)方程的解为___________.
    【答案】
    【分析】依据题意将分式方程化为整式方程,再按照因式分解即可求出的值.
    【详解】解:,
    方程两边同时乘以得,,



    或.
    经检验时,,故舍去.
    原方程的解为:.
    故答案为:.
    【点睛】本题考查的是解分式方程,解题的关键在于注意分式方程必须检验根的情况.
    三、解答题
    31.(2023·湖北黄冈·统考中考真题)化简:.
    【答案】
    【分析】先计算同分母分式的减法,再利用完全平方公式约分化简.
    【详解】解:
    【点睛】本题考查分式的约分化简,解题的关键是掌握分式的运算法则.
    32.(2023·辽宁大连·统考中考真题)计算:.
    【答案】
    【分析】先计算括号内的加法,再计算除法即可.
    【详解】解:
    【点睛】此题考查了分式的混合运算,熟练掌握分式的运算法则和顺序是解题的关键.
    33.(2023·广东深圳·统考中考真题)先化简,再求值:,其中.
    【答案】,
    【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
    【详解】

    ∴原式.
    【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
    34.(2022·江苏南京·模拟预测)解方程:.
    【答案】
    【分析】方程两边同时乘以x﹣2,再解整式方程得x=4,经检验x=4是原方程的根.
    【详解】解:方程两边同时乘以x﹣2得,

    解得:
    检验:当时,,
    ∴是原方程的解,
    ∴原方程的解为x=4.
    【点睛】本题考查了解分式方程,熟练掌握分式方程的解法,切勿遗漏对根的检验是解题的关键.
    35.(2023·四川眉山·统考中考真题)先化简:,再从选择中一个合适的数作为x的值代入求值.
    【答案】;1
    【分析】先根据分式混合运算法则进行计算,然后再代入数据求值即可.
    【详解】解:

    ∵,,
    ∴把代入得:原式.
    【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.
    36.(2023·内蒙古通辽·统考中考真题)以下是某同学化简分式的部分运算过程:
    (1)上面的运算过程中第___________步开始出现了错误;
    (2)请你写出完整的解答过程.
    【答案】(1)一;(2)见解析
    【分析】(1)根据解答过程逐步分析即可解答;
    (2)根据分式混合运算法则进行计算即可.
    【详解】(1)解:
    故第一步错误.
    故答案为:一.
    (2)解:

    【点睛】本题主要考查了分式的混合运算,灵活运用分式的混合运算法则是解答本题的关键.
    37.(2023·湖南怀化·统考中考真题)先化简,再从,0,1,2中选择一个适当的数作为a的值代入求值.
    【答案】,当时,原式为;当时,原式为.
    【分析】本题先对要求的式子进行化简,再选取一个适当的数代入即可求出结果.
    【详解】解:

    当a取,1,2时分式没有意义,
    所以或0,
    当时,原式;
    当时,原式.
    【点睛】本题考查分式的化简求值,解题时要注意先对括号里边进行通分,再约分化简.
    38.(2023·甘肃武威·统考中考真题)化简:.
    【答案】
    【分析】先将除法转化为乘法进行计算,再根据分式的加减计算,即可求解.
    【详解】解:原式

    【点睛】本题考查了分式的混合运算,解题关键是熟练运用分式运算法则进行求解.
    39.(2023·山东烟台·统考中考真题)先化简,再求值:,其中是使不等式成立的正整数.
    【答案】;
    【分析】先根据分式混合运算法则进行化简,然后求出不等式的解集,得出正整数a的值,再代入数据计算即可.
    【详解】解:

    解不等式得:,
    ∵a为正整数,
    ∴,,,
    ∵要使分式有意义,
    ∴,
    ∵当时,,
    ∴,
    ∴把代入得:原式.
    【点睛】本题主要考查了分式化简求作,分式有意义的条件,解不等式,解题的关键是熟练掌握分式混合运算法则,准确计算.
    40.(2023·江苏苏州·统考中考真题)先化简,再求值:,其中.
    【答案】;
    【分析】先根据分式的乘法进行计算,然后计算减法,最后将字母的值代入求解.
    【详解】解:

    当时,
    原式.
    【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.
    41.(2023·湖南永州·统考中考真题)先化简,再求值:,其中.
    【答案】
    【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.
    【详解】

    当时,
    原式.
    【点睛】本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.
    42.(2023·湖北随州·统考中考真题)先化简,再求值:,其中.
    【答案】,.
    【分析】先根据分式的减法法则算括号里面的,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.
    【详解】解:

    当时,原式.
    【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.
    43.(2023·湖南·统考中考真题)先化简,再求值:,其中.
    【答案】,
    【分析】根据分式的加法和乘法法则可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
    【详解】解:原式

    当时,
    原式.
    【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    44.(2023·山西·统考中考真题)解方程:.
    【答案】
    【分析】去分母化为整式方程,求出方程的根并检验即可得出答案.
    【详解】解:原方程可化为.
    方程两边同乘,得.
    解得.
    检验:当时,.
    ∴原方程的解是.
    【点睛】本题考查了分式方程的解法,熟练掌握解分式方程的方法是解题关键.
    45.(2023·湖北宜昌·统考中考真题)先化简,再求值:,其中.
    【答案】,
    【分析】先利用分式除法法则对原式进行化简,再把代入化简结果进行计算即可.
    【详解】解:
    当时,
    原式.
    【点睛】此题考查了分式的化简求值,熟练掌握分式的除法运算法则和二次根式的运算法则是解题的关键.
    46.(2023·湖南郴州·统考中考真题)先化简,再求值:,其中.
    【答案】,
    【分析】先根据分式的加减乘除混合运算进行化简,再将x的值代入,根据二次根式的性质化简即可.
    【详解】解:

    当时,原式.
    【点睛】本题考查分式的加减乘除混合运算,二次根式的性质,正确化简是解题的关键.
    47.(2023·广西·统考中考真题)解分式方程:.
    【答案】
    【分析】去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】解:
    去分母得,
    移项,合并得,
    检验:当时,,
    所以原分式方程的解为.
    【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
    48.(2023·四川·统考中考真题)先化简,再求值:,其中,.
    【答案】;
    【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后将字母的值代入求解.
    【详解】解:

    当,时,
    原式.
    【点睛】本题考查了分式化简求值,二次根式的混合运算,解题关键是熟练运用分式运算法则进行求解.
    49.(2023·山东·统考中考真题)先化简,再求值:,其中x,y满足.
    【答案】,6
    【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时将除法变为乘法,约分得到最简结果,将变形整体代入计算即可求解.
    【详解】解:原式

    由,得到,
    则原式.
    【点睛】此题考查分式的化简求值,解题关键熟练掌握分式混合运算的顺序以及整体代入法求解.
    50.(2023·广东·统考中考真题)某学校开展了社会实践活动,活动地点距离学校,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的倍,结果甲比乙早到,求乙同学骑自行车的速度.
    【答案】乙同学骑自行车的速度为千米/分钟.
    【分析】设乙同学骑自行车的速度为x千米/分钟,则甲同学骑自行车的速度为千米/分钟,根据时间=路程÷速度结合甲车比乙车提前10分钟到达,即可得出关于x的分式方程,解之并检验后即可得出结论.
    【详解】解:设乙同学骑自行车的速度为x千米/分钟,则甲同学骑自行车的速度为千米/分钟,
    根据题意得:,
    解得:.
    经检验,是原方程的解,且符合题意,
    答:乙同学骑自行车的速度为千米/分钟.
    【点睛】题目主要考查分式方程的应用,理解题意列出分式方程求解即可.
    51.(2023·湖南张家界·统考中考真题)先化简,然后从,1,2这三个数中选一个合适的数代入求值.
    【答案】,
    【分析】根据分式的运算法则先化简,然后再由分式有意义的条件代入求值即可.
    【详解】解:原式

    ∵,
    当时
    原式.
    【点睛】题目主要考查分式的化简求值及其有意义的条件,熟练掌握分式的运算法则是解题关键.
    52.(2023·四川遂宁·统考中考真题)先化简,再求值:,其中.
    【答案】,
    【分析】先根据平方差公式,完全平方公式和分式的运算法则对原式进行化简,然后将代入化简结果求解即可.
    【详解】解:

    当时,原式.
    【点睛】本题考查了分式的化简求值,掌握平方差公式,完全平方公式和分式的运算法则是解题关键.
    53.(2023·江西·统考中考真题)化简.下面是甲、乙两同学的部分运算过程:
    (1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)
    ①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.
    (2)请选择一种解法,写出完整的解答过程.
    【答案】(1)②,③;(2)见解析
    【分析】(1)根据所给的解题过程即可得到答案;
    (2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;
    乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.
    【详解】(1)解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,
    故答案为:②,③;
    (2)解:甲同学的解法:
    原式

    乙同学的解法:
    原式

    【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.
    54.(2023·湖南常德·统考中考真题)先化简,再求值:,其中.
    【答案】,
    【分析】先计算括号内的减法运算,再计算除法,得到化简结果,再把字母的值代入计算即可.
    【详解】解:原式

    当时,原式.
    【点睛】此题考查了分式的化简求值,熟练掌握分式运算法则和混合运算顺序是解题的关键.
    55.(2023·山东枣庄·统考中考真题)先化简,再求值:,其中a的值从不等式组的解集中选取一个合适的整数.
    【答案】,
    【分析】先根据分式的混合运算法则,进行化简,再选择一个合适的整数,代入求值即可.
    【详解】解:原式

    ∵,
    ∴,
    ∵,
    ∴的整数解有:,
    ∵,
    ∴,原式.
    【点睛】本题考查分式的化简求值,求不等式组的整数解.熟练掌握相关运算法则,正确的进行计算,是解题的关键.
    56.(2023·山东滨州·统考中考真题)先化简,再求值:,其中满足.
    【答案】;
    【分析】先根据分式的加减计算括号内的,然后将除法转化为乘法,再根据分式的性质化简,根据负整数指数幂,特殊角的三角函数值,求得的值,最后将代入化简结果即可求解.
    【详解】解:

    ∵,
    即,
    ∴原式.
    【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则以及负整数指数幂,特殊角的三角函数值进行求解.
    57.(2023·湖南·统考中考真题)先化简,再求值:,其中.
    【答案】;2
    【分析】先将括号部分通分相加,相乘时,将两个分式的分子和分母因式分解,进行化简,最后代入求值即可.
    【详解】解:



    当时,原式.
    【点睛】本题考查了分式的化简求值,熟练将分式化简是解题的关键.
    58.(2023·山东聊城·统考中考真题)先化简,再求值:,其中.
    【答案】,
    【分析】运用因式分解,约分,通分的技巧化简计算即可.
    【详解】

    当时,

    【点睛】本题考查了分式的化简求值,熟练掌握因式分解,约分,通分的技巧是解题的关键.
    59.(2023·湖北荆州·统考中考真题)先化简,再求值:,其中,.
    【答案】,2
    【分析】根据分式的运算法则,先将分式进行化简,再将和的值代入即可求出答案.
    【详解】解:

    原式.
    故答案为:,2.
    【点睛】本题考查了分式的化简求值问题,解题的关键在于熟练掌握分式的运算法则、零次幂、负整数次幂.
    60.(2023·福建·统考中考真题)先化简,再求值:,其中.
    【答案】,
    【分析】先根据分式的混合运算法则化简,然后再将代入计算即可解答.
    【详解】解:

    当时,
    原式.
    【点睛】本题主要考查了分式的基本性质及其运算、分母有理化,正确的化简分式是解答本题的关键.
    61.(2023·黑龙江·统考中考真题)先化简,再求值:,其中.
    【答案】,原式
    【分析】先根据分式的混合运算法则化简,然后求出,最后代值计算即可.
    【详解】解:

    ∵,
    ∴原式.
    【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,正确计算是解题的关键.
    62.(2023·山东·统考中考真题)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少万元,且用万元购买A型充电桩与用万元购买B型充电桩的数量相等.
    (1)A,B两种型号充电桩的单价各是多少?
    (2)该停车场计划共购买个A,B型充电桩,购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?
    【答案】(1)A型充电桩的单价为万元,B型充电桩的单价为万元
    (2)共有三种方案:方案一:购买A型充电桩个,购买B型充电桩个;方案二:购买A型充电桩个,购买B型充电桩个;方案三:购买A型充电桩个,购买B型充电桩个;方案三总费用最少.
    【分析】(1)根据“用万元购买A型充电桩与用万元购买B型充电桩的数量相等”列分式方程求解;
    (2)根据“购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的”列不等式组确定取值范围,从而分析计算求解
    【详解】(1)解:设B型充电桩的单价为万元,则A型充电桩的单价为万元,由题意可得:
    ,
    解得,
    经检验:是原分式方程的解,

    答:A型充电桩的单价为万元,B型充电桩的单价为万元;
    (2)解:设购买A型充电桩个,则购买B型充电桩个,由题意可得:
    ,解得,
    ∵须为非负整数,
    ∴可取,,,
    ∴共有三种方案:
    方案一:购买A型充电桩个,购买B型充电桩个,购买费用为(万元);
    方案二:购买A型充电桩个,购买B型充电桩个,购买费用为(万元);
    方案三:购买A型充电桩个,购买B型充电桩个,购买费用为(万元),

    ∴方案三总费用最少.
    【点睛】本题主要考查了分式方程的应用,一元一次不等式组的应用,理解题意,找准等量关系列出分式方程和一元一次不等式组是解决问题的关键.解:原式…………第一步
    …………第二步
    …………第三步
    ……

    解:原式
    ……
    解:原式
    ……

    解:原式…………第一步
    …………第二步
    …………第三步
    ……

    解:原式
    ……
    解:原式
    ……

    相关试卷

    2023中考数学真题专项汇编特训 专题04分式与分式方程(共56题)(原卷版+解析): 这是一份2023中考数学真题专项汇编特训 专题04分式与分式方程(共56题)(原卷版+解析),共48页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023中考数学真题专项汇编特训 专题02整式及其运算(原卷版+解析): 这是一份2023中考数学真题专项汇编特训 专题02整式及其运算(原卷版+解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023中考数学真题专项汇编特训 专题02整式及其运算(共37题)(原卷版+解析): 这是一份2023中考数学真题专项汇编特训 专题02整式及其运算(共37题)(原卷版+解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023中考数学真题专项汇编特训 专题04分式与分式方程(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map