云南省玉溪第一中学2023-2024学年高二下学期3月月考数学试题
展开
这是一份云南省玉溪第一中学2023-2024学年高二下学期3月月考数学试题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学试卷
本试卷共8页,19小题,满分150分。考试用时120分钟。
注意事项:
答卷前,考生务必用黑色碳素笔将自己的学校、姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的学校、准考证号、姓名、考场号、座位号,在规定的位置贴好条形码及填涂准考证号。
回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 有一组数据:1、1、2、2、3、3、4、4、4、4,去掉该组中的一个数据,得到一组新的数据.与原有数据相比,无论去掉哪个数据,一定变化的数字特征是
A.平均数B.众数C.中位数D.极差
2. 一种卫星接收天线(如图①所示)的曲面是旋转抛物面(抛物线围绕其对称轴旋转而得的一种空间曲面,抛物线的对称轴、焦点、顶点分别称为旋转抛物面的轴线、焦点、顶点),已知卫星波束以平行于旋转抛物面的轴线的方式射入该卫星接收天线经反射后聚集到焦点处(如图②所示),已知该卫星接收天线的口径(直径)为6m,深度为1m,则其顶点到焦点的距离等于
A.m
B.m
C.1m
D.m
3.公元前6世纪,希腊的毕达哥拉斯学派研究数的概念时,常常把数描绘成沙滩上的小石子,用它们进行各式各样的排列和分类,叫作“形数”.用3颗石子可以摆成一个正三角形,同样用6颗石子或者10颗石子可以摆成更大的三角形.毕达哥拉斯学派把1,3、6、10等叫作“三角数”或“三角形数”.同时他们还摆出了正方形数、五边形数、六边形数和其他多边形数.如图所示即摆出的六边形数,那么第20个六边形数为
A.778B.779C.780D.781
4.下列说法中正确的是( )
A.没有公共点的两条直线是异面直线
B.若两条直线a,b与平面α所成的角相等,则
C.若平面α,β,γ满足,,则
D.已知a,b是不同的直线,α,β是不同的平面.若,,,则
5. 1949年10月1日,开国大典结束后,新成立的中央人民政府在北京饭店举行了有600余位宾客参加的新中国第一次国庆招待会,史称“开国第一宴”.该宴的主要菜品有:鲍鱼浓汁四宝、东坡肉方、蟹粉狮子头、鸡汁煮干丝、清炒翡翠虾仁和全家福.若这六道菜要求依次而上,其中“东坡肉方”和“鸡汁煮干丝”不能接连相邻上菜,则不同的上菜顺序种数为
A.240B.480C.384D.1440
已知圆A:x2+(y-4)2=1,椭圆B:+y2=1,直线l:y=k(x-1)(k∈R),点M为圆A上任意一点,点N为椭圆B上任意一点,以下的判断正确的是
A.直线l与椭圆B相交
B.当k变化时,点M到直线l的距离的最大值为
C.
D.
7.若,则
A.B.C.D.
8. 已知双曲线(,)的左、右焦点分别为、,圆与双曲线在第一象限和第三象限的交点分别为,,四边形的周长与面积满足,则该双曲线的离心率为
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.已知函数,则
A.
B.的最大值为1
C.在上单调递增
D.将函数的图象向右平移个单位长度后与的图象重合
10.已知非零复数,,其共轭复数分别为 则下列选项正确的是
A.
B.
C.若,则 的最小值为2
D.
11.2023年国外某智库发布尖端技术研究国家竞争力排名,在极超音速和水下无人机等23个领域中,中国在其中19个领域领先.某科技博主从这19个领域中选取了A,B,C,D,E,F六个领域,准备在2024年1月1—6日对公众进行介绍,每天随机介绍其中一个领域,且每个领域只在其中一天介绍,则
A.A,B在后3天介绍的方法种数为144
B.C,D相隔一天介绍的方法种数为96
C.E不在第一天,F不在最后一天介绍的方法种数为504
D.A在B,C之前介绍的概率为
三、填空题:本题共3小题,每小题5分,共15分。
12.若为正整数,记集合中的整数元素个数为,则数列的前62项和为__________.
13.从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥,则它的体积与正方体体积的比为___________;它的表面积与正方体表面积的比为____________.
14.已知曲线C:,下列说法正确的有________.
①曲线C关于y轴对称;
②存在a,使得曲线C与坐标轴的交点个数为3;
③曲线C围成的区域面积是关于a的增函数;
④当时,直线l:与曲线C有且仅有2个交点.
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。
15.(13分)
已知函数f(x)=lnx+x2+ax+2在点(2,f(2))处的切线与直线2x+3y=0垂直.
(1)求a;
(2)求f(x)的单调区间和极值.
16.(15分)
17.(15分)
18.(17分)
19.(17分)
英国数学家泰勒发现了如下公式:
其中
为自然对数的底数,
以上公式称为泰勒公式.
设.
根据以上信息,并结合高中所学的数学知识,解决如下问题.
(1)证明:;
(2)设,证明:;
(3)设,若是的极小值点,求实数的取值范围.
相关试卷
这是一份云南省玉溪第一中学2023-2024学年高二下学期开学考试数学试卷,共9页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年云南省玉溪市第三中学高二下学期期末教学质量检测数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年云南省玉溪第一中学高一下学期期中考试数学试题含解析,共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。