压轴题02 反比例函数的综合问题(3题型+解题模板+技巧精讲)-2024年中考数学一轮复习讲义+练习+测试(全国通用)
展开2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
压轴题解题模板02
反比例函数的综合问题
目 录
TOC \ "1-2" \n \p " " \h \z \u 题型一 反比例函数与一次函数交点问题
题型二 反比例函数与一次函数图像面积问题
题型三 反比例函数与几何图形结合
题型一 反比例函数与一次函数交点问题
【例1】(2023·四川攀枝花·统考中考真题)如图,点和是一次函数的图象与反比例函数的图象的两个交点.
(1)求一次函数与反比例函数的表达式;
(2)当为何值时,?
【变式1-1】(2023·湖南常德·统考中考真题)如图所示,一次函数与反比例函数相交于点A和点.
(1)求m的值和反比例函数解析式;
(2)当时,求x的取值范围.
【变式1-2】(2023·山东滨州·统考中考真题)如图,直线为常数与双曲线(为常数)相交于,两点.
(1)求直线的解析式;
(2)在双曲线上任取两点和,若,试确定和的大小关系,并写出判断过程;
(3)请直接写出关于的不等式的解集.
题型二 反比例函数与一次函数图像面积问题
【例2】(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,一次函数与反比例函数交于,两点,与y轴交于点C,连接,.
(1)求反比例函数和一次函数的表达式;
(2)求的面积;
(3)请根据图象直接写出不等式的解集.
【变式2-1】(2023·湖北黄冈·统考中考真题)如图,一次函数与函数为的图象交于两点.
(1)求这两个函数的解析式;
(2)根据图象,直接写出满足时x的取值范围;
(3)点P在线段上,过点P作x轴的垂线,垂足为M,交函数的图象于点Q,若面积为3,求点P的坐标.
【变式2-2】(2023·四川乐山·统考中考真题)如图,一次函数的图象与反比例函数的图象交于点,与x轴交于点B, 与y轴交于点.
(1)求m的值和一次函数的表达式;
(2)已知P为反比例函数图象上的一点,,求点P的坐标.
【变式2-3】(2023·四川巴中·统考中考真题)如图,正比例函数与反比例函数的图象交于A、B两点,A的横坐标为,B的纵坐标为.
(1)求反比例函数的表达式.
(2)观察图象,直接写出不等式的解集.
(3)将直线向上平移n个单位,交双曲线于C、D两点,交坐标轴于点E、F,连接、,若的面积为20,求直线的表达式.
【变式2-4】(2023·四川·统考中考真题)如图,已知一次函数的图象与反比例函数的图象交于,B两点,与x轴交于点C,将直线沿y轴向上平移3个单位长度后与反比例函数图象交于点D,E.
(1)求k,m的值及C点坐标;
(2)连接,,求的面积.
题型三 反比例函数与几何图形结合
【例3】(2023·四川泸州·统考中考真题)如图,在平面直角坐标系中,直线与,轴分别相交于点A,B,与反比例函数的图象相交于点C,已知,点C的横坐标为2.
(1)求,的值;
(2)平行于轴的动直线与和反比例函数的图象分别交于点D,E,若以B,D,E,O为顶点的四边形为平行四边形,求点D的坐标.
【变式3-1】(2023·四川广安·统考中考真题)如图,一次函数(为常数,)的图象与反比例函数为常数,的图象在第一象限交于点,与轴交于点.
(1)求一次函数和反比例函数的解析式.
(2)点在轴上,是以为腰的等腰三角形,请直接写出点的坐标.
【变式3-2】(2023·四川眉山·统考中考真题)如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,与反比例函数在第四象限内的图象交于点.
(1)求反比例函数的表达式:
(2)当时,直接写出x的取值范围;
(3)在双曲线上是否存在点P,使是以点A为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
【变式3-3】(2023·四川成都·统考中考真题)如图,在平面直角坐标系中,直线与y轴交于点A,与反比例函数的图象的一个交点为,过点B作AB的垂线l.
(1)求点A的坐标及反比例函数的表达式;
(2)若点C在直线l上,且的面积为5,求点C的坐标;
(3)P是直线l上一点,连接PA,以P为位似中心画,使它与位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.
一、解答题
1.(2023·四川甘孜·统考中考真题)如图,在平面直角坐标系中,一次函数与反比例函数的图象相交于,B两点.
(1)求反比例函数的解析式;
(2)若点C为x轴正半轴上一点,且满足,求点C的坐标.
2.(2023·山东枣庄·统考中考真题)如图,一次函数的图象与反比例函数的图象交于两点.
(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;
(2)观察图象,直接写出不等式的解集;
(3)设直线与x轴交于点C,若为y轴上的一动点,连接,当的面积为时,求点P的坐标.
3.(2023·四川遂宁·统考中考真题)如图,一次函数的图像与反比例函数的图像交于,两点.(,,为常数)
(1)求一次函数和反比例函数的解析式;
(2)根据图像直接写出不等式的解集;
(3)为轴上一点,若的面积为,求点的坐标.
4.(2023·四川宜宾·统考中考真题)如图,在平面直角坐标系中,等腰直角三角形的直角顶点,顶点A、恰好落在反比例函数第一象限的图象上.
(1)分别求反比例函数的表达式和直线所对应的一次函数的表达式;
(2)在x轴上是否存在一点P,使周长的值最小.若存在,求出最小值;若不存在,请说明理由.
5.(2023·山东·统考中考真题)如图,正比例函数和反比例函数的图像交于点.
(1)求反比例函数的解析式;
(2)将直线向上平移3个单位后,与轴交于点,与的图像交于点,连接,求的面积.
6.(2023·辽宁营口·统考中考真题)如图,点A在反比例函数的图象上,轴于点B,,.
(1)求反比例函数的解析式;
(2)点C在这个反比例函数图象上,连接并延长交x轴于点D,且,求点C的坐标.
7.(2023·四川德阳·统考中考真题)如图,点A在反比例函数的图象上,点C是点A关于y轴的对称点,的面积是8.
(1)求反比例函数的解析式;
(2)当点A的横坐标为2时,过点C的直线与反比例函数的图象相交于点P,求交点P的坐标.
8.(2023·西藏·统考中考真题)如图,一次函数与反比例函数的图象相交于A,B两点,且点A的坐标为,点B的坐标为.
(1)求的值和反比例函数的解析式;
(2)点A关于原点O的对称点为,在x轴上找一点P,使最小,求出点的坐标.
9.(2023·山东淄博·统考中考真题)如图,直线与双曲线相交于点,.
(1)求双曲线及直线对应的函数表达式;
(2)将直线向下平移至处,其中点,点在轴上.连接,,求的面积;
(3)请直接写出关于的不等式的解集.
10.(2023·江苏镇江·统考中考真题)如图,正比例函数与反比例函数的图象交于A,两点,点C在x轴负半轴上,.
(1)______,______,点C的坐标为______.
(2)点P在x轴上,若以B,O,P为顶点的三角形与相似,求点P的坐标.
题型解读:
反比例函数的综合问题在中考中常常以解答题和填空题的形式出现,解答题考查居多.此类题型多是反比例函数与一次函数及几何图形的综合考查,一般要用到解不等式、图形面积、特殊三角形、特殊四边形、相似三角形等相关知识,以及数形结合、分类讨论、转化与化归等数学思想. 此类题型常涉及以下问题:①求反比例函数的解析式;②求交点坐标、图形面积;③利用函数图象比较一次函数与反比例函数值的大小;④反比例函数与几何图形综合.下图为反比例函数综合问题中各题型的考查热度.
下图为二次函数图象性质与几何问题中各题型的考查热度.
解题模板:
技巧精讲:利用函数图象确定不等式的解集:
解题模板:
解题模板:
重难点11 四边形压轴综合(17种题型)-2024年中考数学一轮复习讲义+练习+测试(全国通用): 这是一份重难点11 四边形压轴综合(17种题型)-2024年中考数学一轮复习讲义+练习+测试(全国通用),文件包含重难点11四边形压轴综合17种题型原卷版docx、重难点11四边形压轴综合17种题型解析版docx等2份试卷配套教学资源,其中试卷共245页, 欢迎下载使用。
压轴题01 二次函数图象性质与几何问题(3题型+2类型+解题模板+技巧精讲)-2024年中考数学一轮复习讲义+练习+测试(全国通用): 这是一份压轴题01 二次函数图象性质与几何问题(3题型+2类型+解题模板+技巧精讲)-2024年中考数学一轮复习讲义+练习+测试(全国通用),文件包含压轴题01二次函数图象性质与几何问题3题型+2类型+解题模板+技巧精讲原卷版docx、压轴题01二次函数图象性质与几何问题3题型+2类型+解题模板+技巧精讲解析版docx等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。
专题67 反比例函数背景下的全等、相似问题(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份专题67 反比例函数背景下的全等、相似问题(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含专题67反比例函数背景下的全等相似问题原卷版docx、专题67反比例函数背景下的全等相似问题解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。