还剩5页未读,
继续阅读
所属成套资源:2024年青岛版数学七年级下册精品同步练习
成套系列资料,整套一键下载
06-专项素养综合全练(六)因式分解的方法--2024年青岛版数学七年级下册精品同步练习
展开
这是一份06-专项素养综合全练(六)因式分解的方法--2024年青岛版数学七年级下册精品同步练习,共8页。
专项素养综合全练(六)因式分解的方法类型一 用提公因式法因式分解1.(2023湖南株洲茶陵期中)因式分解:(M7212002)(1)3x2-6x+12xy.(2)(x-y)3+4x(x-y)2.类型二 用公式法因式分解2.因式分解:(1)19m2+23mn+n2.(2)(2m-n)2-6n(2m-n)+9n2.(3)(x2+9)2-36x2.类型三 综合运用提公因式法与公式法因式分解3.(2023山东青岛即墨期中)将下面各式因式分解:(1)-3a2b+12ab-12b.(2)n2(m-2)+16(2-m).类型四 用分组分解法因式分解4.(2023山东济南市中期中节选)阅读下列材料:某校“数学社团”活动中,研究发现常用的分解因式的方法有提公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“m2-mn+2m-2n”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别分解因式后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为m2-mn+2m-2n=(m2-mn)+(2m-2n)=m(m-n)+2(m-n)=(m-n)(m+2).该“社团”将此种因式分解的方法叫做“分组分解法”,请在这种方法的启发下,解决以下问题:(M7212002)(1)分解因式:a3-3a2-6a+18.(2)已知m+n=5,m-n=1,求m2-n2-2n+2m的值.(3)分解因式:m2-a2+2m+2a.类型五 用十字交叉相乘法因式分解5.【项目式学习试题】(2023湖南永州宁远期中)提出问题:你能把多项式x2+5x+6因式分解吗?探究问题:如图1所示,已知a,b为常数,由面积相等可得(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,将该式从右到左使用,就可以对形如x2+(a+b)x+ab的多项式进行因式分解,即x2+(a+b)x+ab=(x+a)(x+b).观察发现多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为两数之和.解决问题:x2+5x+6=x2+(2+3)x+2×3=(x+3)(x+2).运用结论:(M7212002)(1)基础运用:对多项式x2-5x-24进行因式分解.(2)知识迁移:对多项式4x2-4x-15进行因式分解还可以这样思考:将二次项4x2分解成图2中的两个2x的积,再将常数项-15分解成-5与3的乘积,图中的对角线上的乘积的和为-4x,就是4x2-4x-15的一次项,所以有4x2-4x-15=(2x-5)(2x+3),这种分解因式的方法叫做“十字相乘法”.请用十字相乘法进行因式分解:3x2-19x-14. 类型六 换元法6.阅读下列材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题过程用到了“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:9+6(x-y)+(x-y)2= . (2)因式分解:(a+b)(a+b-8)+16.(3)证明:若n为正整数,则式子(n+1)(n+2)·(n+3)(n+4)+1的值一定是某一个整数的平方.答案全解全析1.解析 (1)3x2-6x+12xy=3x(x-2+4y).(2)(x-y)3+4x(x-y)2=(x-y)2(x-y+4x)=(x-y)2(5x-y).2.解析 (1)原式=13m2+2·13m·n+n2=13m+n2.(2)原式=(2m-n)2-2·3n·(2m-n)+(3n)2=(2m-n-3n)2=(2m-4n)2=4(m-2n)2.(3)(x2+9)2-36x2=(x2+9+6x)(x2+9-6x)=(x+3)2(x-3)2.3.解析 (1)-3a2b+12ab-12b=-3b(a2-4a+4)=-3b(a-2)2.(2)n2(m-2)+16(2-m)=(n2-16)(m-2)=(n+4)(n-4)(m-2).4.解析 (1)a3-3a2-6a+18=a2(a-3)-6(a-3)=(a-3)(a2-6).(2)m2-n2-2n+2m=(m2-n2)-(2n-2m)=(m+n)(m-n)-2(n-m)=(m+n)(m-n)+2(m-n)=(m-n)(m+n+2),∵m+n=5,m-n=1,∴原式=1×(5+2)=7.(3)原式=(m2+2m+1)-(a2-2a+1)=(m+1)2-(a-1)2=(m+a)(m-a+2).5.解析 (1)x2-5x-24=x2+(3-8)x+3×(-8)=(x+3)(x-8).(2)用十字相乘法进行因式分解,如图,3x2-19x-14=(x-7)(3x+2).6.解析 (1)将“x-y”看成整体,令x-y=A,则原式=A2+6A+9=(A+3)2,再将“A”还原,得原式=(x-y+3)2,故答案为(x-y+3)2.(2)将“a+b”看成整体,令a+b=A,则原式=A(A-8)+16=A2-8A+16=(A-4)2,再将“A”还原,得原式=(a+b-4)2.(3)证明:(n+1)(n+2)(n+3)(n+4)+1=[(n+1)(n+4)]·[(n+2)(n+3)]+1=(n2+5n+4)(n2+5n+6)+1,令n2+5n=A,则原式=(A+4)(A+6)+1=A2+10A+25=(A+5)2=(n2+5n+5)2,∵n为正整数,∴n2+5n+5是整数,∴式子(n+1)(n+2)(n+3)(n+4)+1的值一定是某一个整数的平方.
专项素养综合全练(六)因式分解的方法类型一 用提公因式法因式分解1.(2023湖南株洲茶陵期中)因式分解:(M7212002)(1)3x2-6x+12xy.(2)(x-y)3+4x(x-y)2.类型二 用公式法因式分解2.因式分解:(1)19m2+23mn+n2.(2)(2m-n)2-6n(2m-n)+9n2.(3)(x2+9)2-36x2.类型三 综合运用提公因式法与公式法因式分解3.(2023山东青岛即墨期中)将下面各式因式分解:(1)-3a2b+12ab-12b.(2)n2(m-2)+16(2-m).类型四 用分组分解法因式分解4.(2023山东济南市中期中节选)阅读下列材料:某校“数学社团”活动中,研究发现常用的分解因式的方法有提公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“m2-mn+2m-2n”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别分解因式后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为m2-mn+2m-2n=(m2-mn)+(2m-2n)=m(m-n)+2(m-n)=(m-n)(m+2).该“社团”将此种因式分解的方法叫做“分组分解法”,请在这种方法的启发下,解决以下问题:(M7212002)(1)分解因式:a3-3a2-6a+18.(2)已知m+n=5,m-n=1,求m2-n2-2n+2m的值.(3)分解因式:m2-a2+2m+2a.类型五 用十字交叉相乘法因式分解5.【项目式学习试题】(2023湖南永州宁远期中)提出问题:你能把多项式x2+5x+6因式分解吗?探究问题:如图1所示,已知a,b为常数,由面积相等可得(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,将该式从右到左使用,就可以对形如x2+(a+b)x+ab的多项式进行因式分解,即x2+(a+b)x+ab=(x+a)(x+b).观察发现多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为两数之和.解决问题:x2+5x+6=x2+(2+3)x+2×3=(x+3)(x+2).运用结论:(M7212002)(1)基础运用:对多项式x2-5x-24进行因式分解.(2)知识迁移:对多项式4x2-4x-15进行因式分解还可以这样思考:将二次项4x2分解成图2中的两个2x的积,再将常数项-15分解成-5与3的乘积,图中的对角线上的乘积的和为-4x,就是4x2-4x-15的一次项,所以有4x2-4x-15=(2x-5)(2x+3),这种分解因式的方法叫做“十字相乘法”.请用十字相乘法进行因式分解:3x2-19x-14. 类型六 换元法6.阅读下列材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题过程用到了“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:9+6(x-y)+(x-y)2= . (2)因式分解:(a+b)(a+b-8)+16.(3)证明:若n为正整数,则式子(n+1)(n+2)·(n+3)(n+4)+1的值一定是某一个整数的平方.答案全解全析1.解析 (1)3x2-6x+12xy=3x(x-2+4y).(2)(x-y)3+4x(x-y)2=(x-y)2(x-y+4x)=(x-y)2(5x-y).2.解析 (1)原式=13m2+2·13m·n+n2=13m+n2.(2)原式=(2m-n)2-2·3n·(2m-n)+(3n)2=(2m-n-3n)2=(2m-4n)2=4(m-2n)2.(3)(x2+9)2-36x2=(x2+9+6x)(x2+9-6x)=(x+3)2(x-3)2.3.解析 (1)-3a2b+12ab-12b=-3b(a2-4a+4)=-3b(a-2)2.(2)n2(m-2)+16(2-m)=(n2-16)(m-2)=(n+4)(n-4)(m-2).4.解析 (1)a3-3a2-6a+18=a2(a-3)-6(a-3)=(a-3)(a2-6).(2)m2-n2-2n+2m=(m2-n2)-(2n-2m)=(m+n)(m-n)-2(n-m)=(m+n)(m-n)+2(m-n)=(m-n)(m+n+2),∵m+n=5,m-n=1,∴原式=1×(5+2)=7.(3)原式=(m2+2m+1)-(a2-2a+1)=(m+1)2-(a-1)2=(m+a)(m-a+2).5.解析 (1)x2-5x-24=x2+(3-8)x+3×(-8)=(x+3)(x-8).(2)用十字相乘法进行因式分解,如图,3x2-19x-14=(x-7)(3x+2).6.解析 (1)将“x-y”看成整体,令x-y=A,则原式=A2+6A+9=(A+3)2,再将“A”还原,得原式=(x-y+3)2,故答案为(x-y+3)2.(2)将“a+b”看成整体,令a+b=A,则原式=A(A-8)+16=A2-8A+16=(A-4)2,再将“A”还原,得原式=(a+b-4)2.(3)证明:(n+1)(n+2)(n+3)(n+4)+1=[(n+1)(n+4)]·[(n+2)(n+3)]+1=(n2+5n+4)(n2+5n+6)+1,令n2+5n=A,则原式=(A+4)(A+6)+1=A2+10A+25=(A+5)2=(n2+5n+5)2,∵n为正整数,∴n2+5n+5是整数,∴式子(n+1)(n+2)(n+3)(n+4)+1的值一定是某一个整数的平方.
相关资料
更多