终身会员
搜索
    上传资料 赚现金

    最新中考数学一轮高频考点+精讲精练 专题05 因式分解

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题05 因式分解(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用).docx
    • 解析
      专题05 因式分解(解析版)-2023年中考数学一轮复习高频考点精讲精练(全国通用).docx
    专题05 因式分解(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)第1页
    专题05 因式分解(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)第2页
    专题05 因式分解(解析版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)第1页
    专题05 因式分解(解析版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)第2页
    专题05 因式分解(解析版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新中考数学一轮高频考点+精讲精练 专题05 因式分解

    展开

    这是一份最新中考数学一轮高频考点+精讲精练 专题05 因式分解,文件包含专题05因式分解原卷版-2023年中考数学一轮复习高频考点精讲精练全国通用docx、专题05因式分解解析版-2023年中考数学一轮复习高频考点精讲精练全国通用docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。


    课本上的例题最具有典型性,可以有选择地做。在做例题时,要把其中包含的知识点抽出来进行总结、归纳,不要就题论题。
    2、要注重知识点的梳理,将知识点形成网络。学生经过一学期的学习,要将知识点进行总结归纳,找出区别与联系。把各章的知识点绘制成知识网络图,将知识系统化、网络化,把知识点串成线,连成面。
    3、要注重总结规律,加强解题后的反思。通过模拟练习题,找出复习重点和自身的薄弱点,认真总结解题的规律方法,切忌不要闷头做题。
    专题05 因式分解
    一、因式分解意义
    【高频考点精讲】
    1.分解因式的定义
    把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式。
    因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式。因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式。
    【热点题型精练】
    1.(2022•衡水模拟)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是( )
    A.都是因式分解
    B.都是乘法运算
    C.①是因式分解,②是乘法运算
    D.①是乘法运算,②是因式分解
    2.(2022•成都模拟)若把多项式x2+mx﹣12分解因式后含有因式x﹣6,则m的值为( )
    A.2B.﹣2C.4D.﹣4
    3.(2022•济宁中考)下面各式从左到右的变形,属于因式分解的是( )
    A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2
    C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x
    4.(2022•永州中考)下列因式分解正确的是( )
    A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)
    C.a2+4a+4=(a+4)2D.a2+b=a(a+b)
    二、提公因式法
    【高频考点精讲】
    1.提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
    2.具体方法
    (1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数,字母应取各项相同的字母,字母的指数应取次数最低的。取相同的多项式,多项式的次数应取最低的。
    (2)如果多项式的第一项为负,一般要提出“﹣”,使括号内第一项的系数为正,提出“﹣”时,多项式的各项都要变号。
    【热点题型精练】
    5.(2022•柳州中考)把多项式a2+2a分解因式得( )
    A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)
    6.(2022•石家庄模拟)将多项式(a﹣1)2﹣a+1因式分解,结果正确的是( )
    A.a﹣1B.(a﹣1)(a﹣2)C.(a﹣1)2D.(a+1)(a﹣1)
    7.(2022•广州中考)分解因式:3a2﹣21ab= .
    8.(2022•遵义模拟)如图,矩形的周长为10,面积为6,则m2n+mn2的值是 .
    三、公式法
    【高频考点精讲】
    1.如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫做公式法。
    平方差公式:a2﹣b2=(a+b)(a﹣b);
    完全平方公式:a2±2ab+b2=(a±b)2;
    2.概括整合
    (1)能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反。
    (2)能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
    【热点题型精练】
    9.(2022•河池中考)多项式x2﹣4x+4因式分解的结果是( )
    A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)2
    10.(2022•衡水模拟)若=8×10×12,则k=( )
    A.12B.10C.8D.6
    11.(2022•荆门中考)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是( )
    A.a3﹣b3=(a﹣b)(a2+ab+b2)
    B.a3﹣b3=(a+b)(a2+ab+b2)
    C.a3﹣b3=(a﹣b)(a2﹣ab+b2)
    D.a3﹣b3=(a+b)(a2+ab﹣b2)
    12.(2022•盘锦中考)分解因式:x2y﹣2xy2+y3= .
    13.(2022•黔东南州中考)分解因式:2022x2﹣4044x+2022= .
    14.(2022•绥化中考)因式分解:(m+n)2﹣6(m+n)+9= .
    四、十字相乘法
    【高频考点精讲】
    1.x2+(p+q)x+pq型式子
    (1)式子特点:二次项的系数是1;常数项是两个数的积。
    (2)x2+(p+q)x+pq=(x+p)(x+q)
    2.ax2+bx+c(a≠0)型式子
    (1)把二次项系数a分解成两个因数a1、a2的积a1•a2,把常数项c分解成两个因数c1、c2的积c1•c2,并使a1c2+a2c1=b。(2)ax2+bx+c=(a1x+c1)(a2x+c2).
    【热点题型精练】
    15.(2022•贺州模拟)把多项式x2+2x﹣8因式分解,正确的是( )
    A.(x﹣4)2B.(x+1)(x﹣8)C.(x+2)(x﹣4)D.(x﹣2)(x+4)
    16.(2022•上海模拟)如果把二次三项式x2+2x+c分解因式得x2+2x+c=(x﹣1)(x+3),那么常数c的值是( )
    A.3B.﹣3C.2D.﹣2
    17.(2022•内江中考)分解因式:a4﹣3a2﹣4= .
    18.(2021•荆门中考)把多项式x3+2x2﹣3x因式分解,结果为 .
    19.(2022•赣州模拟)已知:整式A=x(x+3)+5,整式B=ax﹣1.
    (1)若A+B=(x+2)2,求a的值;
    (2)若A﹣B可以分解为(x﹣2)(x﹣3),求A+B.
    五、因式分解的应用
    【高频考点精讲】
    利用因式分解解决求值问题。
    利用因式分解解决证明问题。
    3.利用因式分解简化计算问题。
    【热点题型精练】
    20.(2022•黔西南州中考)已知ab=2,a+b=3,求a2b+ab2的值是 .
    21.(2022•广安中考)已知a+b=1,则代数式a2﹣b2+2b+9的值为 .
    22.(2021•绵阳中考)若x﹣y=,xy=﹣,则x2﹣y2= .
    23.(2022•西宁中考)八年级课外兴趣小组活动时,老师提出了如下问题:
    将2a﹣3ab﹣4+6b因式分解.
    【观察】经过小组合作交流,小明得到了如下的解决方法:
    解法一:原式=(2a﹣3ab)﹣(4﹣6b)
    =a(2﹣3b)﹣2(2﹣3b)
    =(2﹣3b)(a﹣2)
    解法二:原式=(2a﹣4)﹣(3ab﹣6b)
    =2(a﹣2)﹣3b(a﹣2)
    =(a﹣2)(2﹣3b)
    【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)
    【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;
    【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;
    【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.
    根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.

    相关试卷

    最新中考数学一轮高频考点+精讲精练 专题14 一次函数:

    这是一份最新中考数学一轮高频考点+精讲精练 专题14 一次函数,文件包含专题14一次函数原卷版-2023年中考数学一轮复习高频考点精讲精练全国通用docx、专题14一次函数解析版-2023年中考数学一轮复习高频考点精讲精练全国通用docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    最新中考数学一轮高频考点+精讲精练 专题12 不等式与不等式组:

    这是一份最新中考数学一轮高频考点+精讲精练 专题12 不等式与不等式组,文件包含专题12不等式与不等式组原卷版-2023年中考数学一轮复习高频考点精讲精练全国通用docx、专题12不等式与不等式组解析版-2023年中考数学一轮复习高频考点精讲精练全国通用docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。

    最新中考数学一轮高频考点+精讲精练 专题11 分式方程:

    这是一份最新中考数学一轮高频考点+精讲精练 专题11 分式方程,文件包含专题11分式方程原卷版-2023年中考数学一轮复习高频考点精讲精练全国通用docx、专题11分式方程解析版-2023年中考数学一轮复习高频考点精讲精练全国通用docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        最新中考数学一轮高频考点+精讲精练 专题05 因式分解
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map