搜索
    上传资料 赚现金
    英语朗读宝

    【中考特训】湖南省岳阳市中考数学备考模拟练习 (B)卷(含答案及详解)

    【中考特训】湖南省岳阳市中考数学备考模拟练习 (B)卷(含答案及详解)第1页
    【中考特训】湖南省岳阳市中考数学备考模拟练习 (B)卷(含答案及详解)第2页
    【中考特训】湖南省岳阳市中考数学备考模拟练习 (B)卷(含答案及详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考特训】湖南省岳阳市中考数学备考模拟练习 (B)卷(含答案及详解)

    展开

    这是一份【中考特训】湖南省岳阳市中考数学备考模拟练习 (B)卷(含答案及详解),共30页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
    A.30km/hB.60km/hC.70km/hD.90km/h
    2、若和是同类项,且它们的和为0,则mn的值是( )
    A.-4B.-2C.2D.4
    3、如图,O是直线AB上一点,则图中互为补角的角共有( )
    A.1对B.2对C.3对D.4对
    4、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
    A.1B.2C.3D.0
    5、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
    A.B.C.D.
    6、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
    7、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    8、下面四个立体图形的展开图中,是圆锥展开图的是( ).
    A.B.C.D.
    9、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
    A.B.C.D.
    10、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.米B.10米C.米D.12米
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,小张同学用两个互相垂直的长方形制作了一个“中”字,请根据图中信息用含x的代数式表示该“中”字的面积__________.
    2、在0,1,,四个数中,最小的数是__.
    3、计算:2a2﹣(a2+2)=_______.
    4、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.
    5、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在中,,,.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    三、解答题(5小题,每小题10分,共计50分)
    1、将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.
    (1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.
    (2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.
    2、补全解题过程.
    已知:如图,∠AOB=40°,∠BOC=70°,OD平分∠AOC.
    求∠BOD的度数.
    解:∵∠AOB=40°,∠BOC=70°,
    ∴∠AOC=∠AOB+∠BOC= °.
    ∵OD平分∠AOC,
    ∴∠AOD=∠ ( )(填写推理依据).
    ∴∠AOD= °.
    ∴∠BOD=∠AOD﹣∠ .
    ∴∠BOD= °.
    3、已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).

    (1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;
    (2)△AOB与△FOD是否全等,请说明理由;
    (3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.
    4、如图,D、E、F分别是△ABC各边的中点,连接DE、DF、CD.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)若CD平分∠ACB,求证:四边形DECF为菱形;
    (2)连接EF交CD于点O,在线段BE上取一点M,连接OM交DE于点N.已知CE=a,CF=b,EM=c,求EN的值.
    5、如图1所示,已知△ABC中,∠ACB=90°,BC=2,AC=,点D在射线BC上,以点D为圆心,BD为半径画弧交AB边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G.
    (1)求证:EA=EG;
    (2)若点G在线段AC延长线上时,设BD=x,FC=y,求y关于x的函数解析式并写出定义域;
    (3)联结DF,当△DFG是等腰三角形时,请直接写出BD的长度.
    -参考答案-
    一、单选题
    1、B
    【分析】
    直接观察图象可得出结果.
    【详解】
    解:根据函数图象可知:t=1时,y=90;
    ∵汽车是从距离某城市30km开始行驶的,
    ∴该汽车行驶的速度为90-30=60km/h,
    故选:B.
    【点睛】
    本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
    2、B
    【分析】
    根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
    【详解】
    解:∵和是同类项,且它们的和为0,
    ∴2+m=3,n-1=-3,
    解得m=1,n=-2,
    ∴mn=-2,
    故选:B.
    【点睛】
    此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
    3、B
    【分析】
    根据补角定义解答.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
    故选:B.
    【点睛】
    此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
    4、B
    【分析】
    证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
    【详解】
    解:∵与都是以A为直角顶点的等腰直角三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴,故①正确;
    ∵△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵∠ABD+∠DBC=45°,
    ∴∠ACE+∠DBC=45°,
    ∵,
    ∴,
    ∴不成立,故②错误;
    设BD交CE于M,
    ∵∠ACE+∠DBC=45°,∠ACB=45°,
    ∴∠BMC=90°,
    ∴,故③正确,
    故选:B.
    【点睛】
    此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
    5、C
    【分析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    解:连接AD,
    ∵△ABC是等腰三角形,点D是BC边的中点,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴AD⊥BC,
    ∴,解得AD=10,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=CM+MD+CD=AD+.
    故选:C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    6、C
    【分析】
    先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
    【详解】
    解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
    ∴选项A不正确;
    a+b>0,选项B不正确;
    ∵a<0,b>0,
    ∴ab<0,选项D不正确;
    ∵a<b,
    ∴a﹣b<0,选项C正确,
    故选:C.
    【点睛】
    本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
    7、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    8、B
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
    【详解】
    解:选项A是四棱柱的展开图,故A不符合题意;
    选项B是圆锥的展开图,故B符合题意;
    选项C是三棱柱的展开图,故C不符合题意;
    选项D是圆柱的展开图,故D不符合题意;
    故选B
    【点睛】
    本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
    9、B
    【分析】
    根据题意可知,中午的气温是,然后计算即可.
    【详解】
    解:由题意可得,
    中午的气温是:°C,
    故选:.
    【点睛】
    本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
    10、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    二、填空题
    1、27x-27##-27+27x
    【解析】
    【分析】
    用两个互相垂直的长方形的面积之和减去重叠部分长方形的面积即可求解.
    【详解】
    解:“中”字的面积=3×3x+9×2x-3×9=9x+18x-27=27x-27,
    故答案为:27x-27
    【点睛】
    此题考查列代数式,掌握长方形的面积表示方法是解答此题的关键.
    2、-2
    【解析】
    【分析】
    由“负数一定小于正数和零”和“两个负数绝对值大的反而小”即可得到答案.
    【详解】
    ∵负数一定小于正数和零,两个负数绝对值大的反而小,
    ∴在0,1,,四个数中,最小的数是,
    故答案为:.
    【点睛】
    本题考查了有理数大小的比较,掌握“两个负数绝对值大的反而小”是解决问题的关键.
    3、##-2+a2
    【解析】
    【分析】
    根据整式的加减运算法则即可求出答案.
    【详解】
    解:原式=2a2-a2-2
    =.
    【点睛】
    本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,特别注意括号前面是负号去掉括号和负号括号里面各项都要变号.本题属于基础题型.
    4、19.2
    【解析】
    【分析】
    点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.
    【详解】
    解:如图所示:点P关于直线AB、AC的对称点分别为M、N,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    由图可得:,
    当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,
    ∴,,
    ∵等腰面积为48,,
    ∴,

    ∴,
    故答案为:.
    【点睛】
    题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.
    5、12
    【解析】
    【分析】
    证明Rt△AIC≌Rt△CGK,得到AI=CG,利用勾股定理结合面积法求得CG=,进一步计算即可求解.
    【详解】
    解:过点A作AI⊥BC于点I,
    ∵正方形ACKL,∴∠ACK=90°,AC=CK,
    ∴∠ACI+∠KCG=90°,∠ACI+∠CAI=90°,
    ∴Rt△AIC≌Rt△CGK,
    ∴AI=CG,
    ∵,,.
    ∴BC=5,
    ∵,
    ∴AI=,则CG=,
    ∵正方形BCDE,
    ∴CD=BC=5,
    ∴长方形CDPG的面积为5.
    故答案为:12.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    【点睛】
    本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键.
    三、解答题
    1、
    (1)见解析;
    (2)能成为直角三角形,=30°或60°
    【分析】
    (1)由全等三角形的性质可得∠AEF=∠ACB,AE=AC,根据等腰三角形的判定与性质证明∠PEC=∠PCE,PE=PC,然后根据线段垂直平分线的判定定理即可证得结论;
    (2)分∠CPN=90°和∠CNP=90°,利用旋转的性质和三角形的内角和定理求解即可.
    (1)
    证明:∵两块是完全相同的且含角的直角三角板和,
    ∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,
    ∴∠AEC=∠ACE,
    ∴∠AEC-∠AEF=∠ACE-∠ACB,
    ∴∠PEC=∠PCE,
    ∴PE=PC,又AE=AC,
    ∴所在的直线是线段的垂直平分线.
    (2)
    解:在旋转过程中,能成为直角三角形,
    由旋转的性质得:∠FAC= ,
    当∠CNP=90°时,∠FNA=90°,又∠F=60°,
    ∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;
    当∠CPN=90°时,∵∠NCP=30°,
    ∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,
    ∵∠F=60°,
    ∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,
    综上,旋转角的的度数为30°或60°.
    【点睛】
    本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.
    2、110,AOC,角平分线的定义,55,AOB,15
    【分析】
    利用角的和差关系先求解 再利用角平分线的定义求解 最后利用角的和差· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    可得答案.
    【详解】
    解:∵∠AOB=40°,∠BOC=70°,
    ∴∠AOC=∠AOB+∠BOC=110°.
    ∵OD平分∠AOC,
    ∴∠AOD=∠AOC( 角平分线的定义).
    ∴∠AOD=55°.
    ∴∠BOD=∠AOD﹣∠AOB.
    ∴∠BOD=15°.
    故答案为:110,AOC,角平分线的定义,55,AOB,15
    【点睛】
    本题考查的是角平分线的定义,角的和差运算,理解题中的逻辑关系,熟练的运用角平分线与角的和差进行推理是解本题的关键.
    3、
    (1)E(,)
    (2)△AOB≌△FOD,理由见详解;
    (3)P(0,-3)或(4,1)或(,).
    【分析】
    (1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D的坐标,然后根据点E到两坐标轴的距离相等,得到OE平分∠BOC,进而求出点E的坐标即可;
    (2)首先求出直线DE的解析式,得到点F的坐标,即可证明△AOB≌△FOD;
    (3)首先求出直线GC的解析式,求出AB的长,设P(m,m-3),分类讨论①当AB=AP时,②当AB=BP时,③当AP=BP时,分别求出m的值即可解答.
    (1)
    解: 连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,
    当y=0时,-3x+3=0,
    解得x=1,
    ∴A(1,0),
    当x=0时,y=3,
    ∴OB=3,B(0,3),
    ∵点D与点C关于y轴对称,C(3,0),OC=3,
    ∴D(-3,0),
    ∵点E到两坐标轴的距离相等,
    ∴EG=EH,
    ∵EH⊥OC,EG⊥OC,
    ∴OE平分∠BOC,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵OB=OC=3,
    ∴CE=BE,
    ∴E为BC的中点,
    ∴E(,);
    (2)
    解: △AOB≌△FOD,
    设直线DE表达式为y=kx+b,
    则,
    解得:,
    ∴y=x+1,
    ∵F是直线DE与y轴的交点,
    ∴F(0,1),
    ∴OF=OA=1,
    ∵OB=OD=3,∠AOB=∠FOD=90°,
    ∴△AOB≌△FOD;
    (3)
    解:∵点G与点B关于x轴对称,B(0,3),
    ∴点G(0,-3),
    ∵C(3,0),
    设直线GC的解析式为:y=ax+c,

    解得:,
    ∴y=x-3,
    AB== ,
    设P(m,m-3),
    ①当AB=AP时,
    =
    整理得:m2-4m=0,
    解得:m1=0,m2=4,
    ∴P(0,-3)或(4,1),
    ②当AB=BP时,=
    m2-6m+13=0,
    △<0
    故不存在,
    ③当AP=BP时,
    =,
    解得:m=,
    ∴P(, ),
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    综上所述P(0,-3)或(4,1)或(,),
    【点睛】
    此题主要考查待定系数法求一次函数,一次函数与坐标轴的交点,全等三角形的判定,勾股定理.
    4、
    (1)见解析
    (2)EN=
    【分析】
    (1)根据三角形的中位线定理先证明四边形为平行四边形,再根据角平分线平行证明一组邻边相等即可;
    (2)由(1)得,所以要求的长,想到构造一个“ “字型相似图形,进而延长交于点,先证明,得到,再证明,然后根据相似三角形对应边成比例,即可解答.
    (1)
    证明:、、分别是各边的中点,
    ,是的中位线,
    ,,
    四边形为平行四边形,
    平分,





    四边形为菱形;
    (2)
    解:延长交于点,

    ,,,
    四边形为平行四边形,








    【点睛】
    本题考查了菱形的判定与性质,三角形的中位线定理,相似三角形的判定与性质,解题的关键是根据题目的已知并结合图形.
    5、
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)见解析
    (2)
    (3)
    【分析】
    (1)在BA上截取BM=BC=2,在Rt△ACB中,由勾股定理,可得AB=4,进而可得∠A=30°,∠B=60°;由DE=DB,可证△DEB是等边三角形,∠BED=60°,由外角和定理得∠BED=∠A+∠G,进而得∠G=30°,所以∠A=∠G,即可证EA=EG;
    (2)由△DEB是等边三角形可得BE=DE,由BD=x,FC=y,得BE=x, DE=x,AE=AB-BE=4-x,在Rt△AEF中,由勾股定理可表示出 ,把相关量代入FC=AC-AF,整理即可得y关于x的函数解析式;当F点与C点重合时,x取得最小值1,G在线段AC延长线上,可知,D点不能与C点重合,所以x最大值小于2,故可得1≤x

    相关试卷

    模拟真题湖南省中考数学备考模拟练习 (B)卷(含答案及详解):

    这是一份模拟真题湖南省中考数学备考模拟练习 (B)卷(含答案及详解),共27页。试卷主要包含了下列方程变形不正确的是,抛物线的顶点为,如图,在中,,,,则的度数为等内容,欢迎下载使用。

    备考练习湖南省汨罗市中考数学备考模拟练习 (B)卷(含答案详解):

    这是一份备考练习湖南省汨罗市中考数学备考模拟练习 (B)卷(含答案详解),共21页。试卷主要包含了如图,A,一元二次方程的根为等内容,欢迎下载使用。

    备考特训湖南省娄底市中考数学模拟专项测试 B卷(含详解):

    这是一份备考特训湖南省娄底市中考数学模拟专项测试 B卷(含详解),共26页。试卷主要包含了下列函数中,随的增大而减小的是,如图,,单项式的次数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map