适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布第7节二项分布超几何分布正态分布课件新人教A版
展开这是一份适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布第7节二项分布超几何分布正态分布课件新人教A版,共48页。PPT课件主要包含了强基础固本增分,研考点精准突破,目录索引,伯努利试验,XBnp,p1-p,np1-p,标准正态分布,常用结论,ξ的分布列为等内容,欢迎下载使用。
1.理解伯努利试验,掌握二项分布及其数字特征,并能解决简单的实际问题.2.理解超几何分布及其均值,并能解决简单的实际问题.3.理解服从正态分布的随机变量,借助频率直方图的几何直观,理解正态分布的特征.4.理解正态分布的均值、方差及其含义.
1.n重伯努利试验与二项分布(1)n重伯努利试验把只包含两个可能结果的试验叫做 . 将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.(2)二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0
(3)两点分布与二项分布的均值、方差如果随机变量X服从两点分布,那么E(X)= ,D(X)= . 如果X~B(n,p),那么E(X)= ,D(X)= .
微点拨判断一个随机变量是否服从二项分布的两个关键点:(1)在一次试验中,事件A发生与不发生,二者必居其一,且A发生的概率不变;(2)试验可以独立重复进行n次.
2.超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为
其中n,M,N∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.
微点拨超几何分布与二项分布的关系
3.正态分布(1)正态曲线函数f(x)= ,x∈R,其中μ∈R,σ>0为参数,我们称f(x)为正态密度函数,称它的图象为正态密度曲线,简称正态曲线.(2)正态曲线特点
①曲线位于x轴上方,与x轴不相交.当|x|无限增大时,曲线无限接近x轴.②曲线与x轴之间的区域的面积为1.③曲线是单峰的,它关于直线x=μ对称.
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移.⑥当μ取定值时,正态曲线的形状由σ确定,σ较小时,峰值高,正态曲线“瘦高”,表示随机变量X的分布比较集中,如图1所示;σ较大时,峰值低,正态曲线“矮胖”,表示随机变量X的分布比较分散,如图2所示.
(3)定义及表示若随机变量X的概率分布密度函数为f(x)= ,x∈R,则称随机变量X服从正态分布,记为 .特别地,当μ=0,σ=1时,称随机变量X服从 .
服从正态分布的随机变量是一种连续型随机变量
X~N(μ,σ2)
(4)3σ原则假设X~N(μ,σ2),可以证明:对给定的k∈N*,P(μ-kσ≤X≤μ+kσ)是一个只与k有关的定值.特别地,①P(μ-σ≤X≤μ+σ)≈0.682 7.②P(μ-2σ≤X≤μ+2σ)≈0.954 5.③P(μ-3σ≤X≤μ+3σ)≈0.997 3.(5)正态分布的均值与方差若X~N(μ,σ2),则X的均值与方差分别为E(X)= ,D(X)= .
题组一思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)1.二项分布是一个概率分布,其概率计算公式相当于(a+b)n二项展开式的通项,其中a=p,b=1-p.( )2.从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.( )3.两点分布是二项分布当n=1时的特殊情况.( )4.正态曲线落在区间(μ-3σ,μ+3σ)之外的部分对应事件的概率很小,接近于0.( )
题组二回源教材5.(人教A版选择性必修第二册7.4.1节例1改编)将一枚质地均匀的硬币重复抛掷10次,则恰好出现5次正面朝上的概率是 .
6.(人教B版选择性必修第二册4.2.4节练习B第1题改编)已知随机变量X服从参数为n,p的二项分布,即X~B(n,p),且E(X)=7,D(X)=6,则p的值为 .
7.(人教B版选择性必修第二册4.2.3节例3改编)学校要从5名男教师和2名女教师中随机选出3人去支教,设抽取的人中女教师的人数为X,则P(X≤1)= .
题组三连线高考8.(2022·新高考Ⅱ,13)随机变量X服从正态分布N(2,σ2),若P(2
解析 由题意可知,P(X>2)=0.5,故P(X>2.5)=P(X>2)-P(2
由此可得ξ的分布列为
考点一 二项分布及其应用
例1(2024·云南昆明模拟)已知某学校的校排球队来自高一、高二、高三三个年级的学生人数分别为7人、6人、2人.(1)若从该校排球队随机抽取3人拍宣传海报,求抽取的3人中恰有1人来自高三年级的概率;(2)现该校的排球教练对“发球、垫球、扣球”这3个动作技术进行训练,且在训练阶段进行了多轮测试,规定:在一轮测试中,这3个动作至少有2个动作达到“优秀”,则该轮测试记为“优秀”.已知在某一轮测试的3个动作中,甲
解 (1)设A表示事件“抽取的3人中恰有1人来自高三年级”,则有
[对点训练1](2024·安徽蚌埠模拟)某地有一家知名蛋糕房根据以往某种蛋糕在100天里的销售记录,绘制了以下频数分布表:
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用ξ表示在未来3天里日销售量不低于150个的天数,求随机变量ξ的分布列、均值E(ξ)和方差D(ξ).
续2天的日销售量都不低于100个且另一天的日销售量低于50个”,则P(A)=0.62×0.15+0.15×0.62=0.108.
E(ξ)=3×0.3=0.9,D(ξ)=3×0.3×(1-0.3)=0.63.
考点二 超几何分布及其应用
例2(2024·青海西宁模拟)某机构针对延迟退休这一想法进行了网上调查,所有参与调查的人中,持“支持”“保留”和“不支持”态度的人数如下表所示.
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持“不支持”态度的人中抽取了30人,求n的值;(2)在持“不支持”态度的人中,用分层抽样的方法抽取10人,并将这10人看成一个总体,从这10人中任意选取3人,求50岁以下人数ξ的分布列和数学期望.
解 (1)参与调查的总人数为8 000+4 000+2 000+1 000+2 000+3 000=20 000,其中从持“不支持”态度的人数2 000+3 000=5 000中抽取了30人,所以n=20 000 =120.
(2)在持“不支持”态度的人中,50岁以下和50岁及以上的人数之比为2∶3,因此抽取的10人中,50岁以下与50岁及以上的人数分别为4人,6人,故ξ的
[对点训练2](2024·河南洛阳模拟)某校为了调查网课期间学生在家锻炼身体的情况,随机抽查了150名学生,并统计出他们在家的锻炼时长,得到频率分布直方图如图所示.
(1)求a的值,并估计锻炼时长的平均数(同一组中的数据用该组区间的中点值代替);(2)从锻炼时长分布在[20,30),[30,40),[40,50),[50,60]的学生中按分层抽样的方法抽出7名学生,再从这7名学生中随机抽出3人,记3人中锻炼时长不少于40分钟的学生人数为X,求X的分布列和数学期望.
解 (1)由题意可得(0.006+0.010+2a+0.024+0.036)×10=1,解得a=0.012,样本数据在[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]内的频率分别为0.06,0.10,0.12,0.36,0.24,0.12,则平均值为0.06×5+0.10×15+0.12×25+0.36×35+0.24×45+0.12×55=34.8,故估计锻炼时长的平均数为34.8.
考点三 正态分布及其应用(多考向探究预测)
考向1正态分布的概率计算例3(1)(2024·贵州黔东南模拟)已知X服从正态分布N(2,σ2),且P(1≤X≤2)=0.4,则P(X>3)= .
解析 由题知μ=2,故P(X≥2)=0.5,又P(2≤X≤3)=P(1≤X≤2)=0.4,故P(X>3)=P(X≥2)-P(2≤X≤3)=0.5-0.4=0.1.
(2)(2024·云南昆明模拟)某校高三年级近期进行一次数学考试,参加考试的学生人数有1 000人,考试成绩X~N(80,25),则该年级学生中数学成绩在90分以上的人数约为 .(运算结果四舍五入到整数) (参考数据:P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ+2σ≤X≤μ+2σ)≈0.954 5)
解析 由成绩X~N(80,25)知,μ=80,σ=5,μ-σ=75,μ+σ=85,μ-2σ=70,μ+2σ=90,所以P(75≤X≤85)≈0.682 7,P(70≤X≤90)≈0.954 5,所以P(X>90) (1-0.954 5) =0.022 75,则该年级学生中数学考试成绩在90分以上的人数为1 000×0.022 75≈23.
[对点训练3](多选题)(2024·安徽安庆模拟)某中学高一(2)班物理课外兴趣小组在最近一次课外探究学习活动中,测量某种物体的质量X服从正态分布N(10,0.04),则下列判断错误的是( )A.P(X>10)=0.5B.P(X>10.2)=P(X<9.8)C.P(X>9.6)解析 因为X服从正态分布N(10,0.04),所以μ=10,σ=0.2,所以P(X>10)=P(X<10)=0.5,P(X>10.2)=P(X<9.8),P(9.4
考向2正态分布的实际应用例4(2024·广东省六校联考)某商场在五一假期期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,闯关活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.
(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给2 500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7;P(μ-2σ≤X≤μ+2σ)≈0.954 5;P(μ-3σ≤X≤μ+3σ)≈0.997 3.
解 (1)设Ai表示事件“第i次通过第一关”,Bi表示事件“第i次通过第二关”,甲可以进入第三关的概率为P,由题意知
(2)设此次闯关活动的分数记为X~N(μ,σ2).
[对点训练4]为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在[μ-3σ, μ+3σ]之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在[μ-3σ,μ+3σ]之外的零件,就认为这条生产线在这一天的生产过程中可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内从该生产线上抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 9.91 10.13 10.02 9.22 10.04 10.05 9.95
解 (1)抽取的一个零件的尺寸在[μ-3σ,μ+3σ]之内的概率约为0.997 3,从而零件的尺寸在[μ-3σ,μ+3σ]之外的概率约为0.002 7,故X~B(16,0.002 7).因此P(X≥1)=1-P(X=0)=1-0.997 316≈0.042 4.X的数学期望E(X)=16×0.002 7=0.043 2.
(2)①如果生产状态正常,一个零件尺寸在[μ-3σ,μ+3σ]之外的概率只有0.002 7,一天内抽取的16个零件中,出现尺寸在[μ-3σ,μ+3σ]之外的零件的概率只有0.042 4,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.
相关课件
这是一份适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布解答题专项6概率与统计中的综合问题课件新人教A版,共43页。PPT课件主要包含了所以X的分布列为,故列联表为等内容,欢迎下载使用。
这是一份适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布第5节事件的相互独立性与条件概率全概率公式课件新人教A版,共35页。PPT课件主要包含了强基础固本增分,研考点精准突破,目录索引,条件概率,ABD,考点二条件概率,考点三全概率公式等内容,欢迎下载使用。
这是一份适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布第2节排列与组合课件新人教A版,共34页。PPT课件主要包含了强基础固本增分,研考点精准突破,目录索引,一定的顺序,排列数与组合数,不同排列,不同组合,常用结论,考点一排列问题,考点二组合问题等内容,欢迎下载使用。