终身会员
搜索
    上传资料 赚现金
    中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(原卷版) .doc
    • 讲义
      中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(解析版) .doc
    中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)01
    中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)02
    中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)03
    中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)01
    中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)02
    中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)

    展开
    这是一份中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版),文件包含中考数学二轮重难点复习讲义模型03全等三角形中的常见五种基本模型原卷版doc、中考数学二轮重难点复习讲义模型03全等三角形中的常见五种基本模型解析版doc等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不在重复.
    模型一、截长补短模型
    ①截长:在较长的线段上截取另外两条较短的线段。
    如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,
    可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,
    ∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.
    ②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。
    如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS),
    可得CF=FG=BN,∠DFC=∠BNC=135°,
    又知∠FGC=45°,可证BN∥FG,于是四边形BFGN为平行四边形,得BF=NG,
    所以BF=NG=NC+CG=DF+CG.
    模型二、平移全等模型

    模型三、对称全等模型

    模型四、旋转全等模型

    模型五、手拉手全等模型

    例题精讲
    模型一、截长补短模型
    【例1】.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C= .

    变式训练
    【变式1-1】.如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB=60°,且CA+AP=BC,则∠CAB的度数为( )

    A.60°B.70°C.80°D.90°
    【变式1-2】.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
    求证:∠A+∠C=180°.

    【变式1-3】.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC于F.
    (1)求△CDE的面积;
    (2)证明:DF+CF=EF.

    模型二、平移全等模型
    【例2】.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.
    (1)求证:△AED≌△EBC.
    (2)当AB=6时,求CD的长.
    变式训练
    【变式2-1】.如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.
    【变式2-2】.如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.
    (1)求证:△ABC≌△DFE;
    (2)求证:点O为BF的中点.
    【变式2-3】.如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
    (1)求证:△AOC≌△BOD;
    (2)若AD=1,∠ADC=60°,求CD的长.
    模型三、对称全等模型
    【例3】.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.
    (1)求∠PAD的度数;
    (2)求证:P是线段CD的中点.

    变式训练
    【变式3-1】.如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.
    求证:AM=AN.
    【变式3-2】.如图,已知点E、F分别是正方形ABCD中边AB、BC上的点,且AB=12,AE=6,将正方形分别沿DE、DF向内折叠,此时DA与DC重合为DG,求CF的长度.
    【变式3-3】.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.

    模型四、旋转全等模型
    【例4】.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.
    变式训练
    【变式4-1】.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.
    (1)如图1,点E在BC上,求证:BC=BD+BE;
    (2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.
    【变式4-2】.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是 3+4 .

    模型五、手拉手全等模型
    【例5】.如图,△ABC与△ADE是以点A为公共顶点的两个三角形,且AD=AE,AB=AC,∠DAE=∠CAB=90°,且线段BD、CE交于F.
    (1)求证:△AEC≌△ADB.
    (2)猜想CE与DB之间的关系,并说明理由.
    变式训练
    【变式5-1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③DE=DP;④∠AOB=60°.恒成立的结论有几个( )
    A.1个B.2个C.3个D.4个
    【变式5-2】.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
    (1)求证:△ABC≌△ADE;
    (2)求∠FAE的度数;
    (3)求证:CD=2BF+DE.
    【变式5-3】.(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.
    (2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD还相等吗?为什么?

    实战演练
    1.如图,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的度数为( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    2.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:
    ①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有( )个.
    A.4B.3C.2D.1
    3.如图,在△ABC中,∠BAC=30°,且AB=AC,P是△ABC内一点,若AP+BP+CP的最小值为4,则BC2= .
    4.正方形ABCD中,AB=6,点E在边CD上,CE=2DE,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连接AG,CF.下列结论:①△ABG≌△AFG; ②S△FGC=6;③EG=DE+BG;④BG=GC.其中正确的有 (填序号).
    5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处.
    (1)求证:AF=CF
    (2)求AF的长度.
    6.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
    (1)求证:△ACD≌△BCE;
    (2)若AB=3cm,则BE= cm.
    (3)BE与AD有何位置关系?请说明理由.

    7.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.
    (1)求证:AE=AF;
    (2)求证:CD=2BE+DE.
    8.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.
    (1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.
    (2)求证:BE2+CF2=EF2.
    (3)在(1)的条件下,求△DEF的面积.
    9.如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.
    (1)线段AE与DB的数量关系为 ;请直接写出∠APD= ;
    (2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;
    (3)在(2)的条件下求证:∠APC=∠BPC.
    10.阅读与理解:
    折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?
    分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D>∠B,所以∠C>∠B.
    感悟与应用:
    (1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;
    (2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
    ①求证:∠B+∠D=180°;
    ②求AB的长.
    11.如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.
    (1)李明同学作了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP',可说明△APP'是直角三角形从而问题得到解决.请你说明其中理由并完成问题解答.
    (2)如图丙,在正方形ABCD内有一点P,且AP=,BP=,PC=1:类比第一小题的方法求∠BPC的度数,并直接写出正方形ABCD的面积.
    12.在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.
    (1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为 .
    (2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
    (3)在(2)的条件下,若AB=12,求CF的最大值.
    相关试卷

    中考数学二轮重难点复习讲义模型05 相似三角形中的常见五种基本模型(2份打包,原卷版+解析版): 这是一份中考数学二轮重难点复习讲义模型05 相似三角形中的常见五种基本模型(2份打包,原卷版+解析版),文件包含中考数学二轮重难点复习讲义模型05相似三角形中的常见五种基本模型原卷版doc、中考数学二轮重难点复习讲义模型05相似三角形中的常见五种基本模型解析版doc等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。

    模型03 全等三角形中的常见五种基本模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型03 全等三角形中的常见五种基本模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型03全等三角形中的常见五种基本模型原卷版docx、模型03全等三角形中的常见五种基本模型解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    中考数学二轮复习几何模型专题03 一线三垂直模型构造全等三角形(2份打包,原卷版+教师版): 这是一份中考数学二轮复习几何模型专题03 一线三垂直模型构造全等三角形(2份打包,原卷版+教师版),文件包含中考数学二轮复习几何模型专题03一线三垂直模型构造全等三角形原卷版doc、中考数学二轮复习几何模型专题03一线三垂直模型构造全等三角形教师版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map