中考数学二轮重难点复习讲义模型03 全等三角形中的常见五种基本模型(2份打包,原卷版+解析版)
展开全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不在重复.
模型一、截长补短模型
①截长:在较长的线段上截取另外两条较短的线段。
如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,
可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,
∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.
②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。
如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS),
可得CF=FG=BN,∠DFC=∠BNC=135°,
又知∠FGC=45°,可证BN∥FG,于是四边形BFGN为平行四边形,得BF=NG,
所以BF=NG=NC+CG=DF+CG.
模型二、平移全等模型
模型三、对称全等模型
模型四、旋转全等模型
模型五、手拉手全等模型
例题精讲
模型一、截长补短模型
【例1】.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C= .
变式训练
【变式1-1】.如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB=60°,且CA+AP=BC,则∠CAB的度数为( )
A.60°B.70°C.80°D.90°
【变式1-2】.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
求证:∠A+∠C=180°.
【变式1-3】.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC于F.
(1)求△CDE的面积;
(2)证明:DF+CF=EF.
模型二、平移全等模型
【例2】.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.
(1)求证:△AED≌△EBC.
(2)当AB=6时,求CD的长.
变式训练
【变式2-1】.如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.
【变式2-2】.如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.
(1)求证:△ABC≌△DFE;
(2)求证:点O为BF的中点.
【变式2-3】.如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,∠ADC=60°,求CD的长.
模型三、对称全等模型
【例3】.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.
(1)求∠PAD的度数;
(2)求证:P是线段CD的中点.
变式训练
【变式3-1】.如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.
求证:AM=AN.
【变式3-2】.如图,已知点E、F分别是正方形ABCD中边AB、BC上的点,且AB=12,AE=6,将正方形分别沿DE、DF向内折叠,此时DA与DC重合为DG,求CF的长度.
【变式3-3】.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.
模型四、旋转全等模型
【例4】.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.
变式训练
【变式4-1】.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.
(1)如图1,点E在BC上,求证:BC=BD+BE;
(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.
【变式4-2】.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是 3+4 .
模型五、手拉手全等模型
【例5】.如图,△ABC与△ADE是以点A为公共顶点的两个三角形,且AD=AE,AB=AC,∠DAE=∠CAB=90°,且线段BD、CE交于F.
(1)求证:△AEC≌△ADB.
(2)猜想CE与DB之间的关系,并说明理由.
变式训练
【变式5-1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③DE=DP;④∠AOB=60°.恒成立的结论有几个( )
A.1个B.2个C.3个D.4个
【变式5-2】.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
【变式5-3】.(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.
(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD还相等吗?为什么?
实战演练
1.如图,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的度数为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:
①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有( )个.
A.4B.3C.2D.1
3.如图,在△ABC中,∠BAC=30°,且AB=AC,P是△ABC内一点,若AP+BP+CP的最小值为4,则BC2= .
4.正方形ABCD中,AB=6,点E在边CD上,CE=2DE,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连接AG,CF.下列结论:①△ABG≌△AFG; ②S△FGC=6;③EG=DE+BG;④BG=GC.其中正确的有 (填序号).
5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处.
(1)求证:AF=CF
(2)求AF的长度.
6.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AB=3cm,则BE= cm.
(3)BE与AD有何位置关系?请说明理由.
7.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.
(1)求证:AE=AF;
(2)求证:CD=2BE+DE.
8.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.
(1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.
(2)求证:BE2+CF2=EF2.
(3)在(1)的条件下,求△DEF的面积.
9.如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.
(1)线段AE与DB的数量关系为 ;请直接写出∠APD= ;
(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;
(3)在(2)的条件下求证:∠APC=∠BPC.
10.阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?
分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D>∠B,所以∠C>∠B.
感悟与应用:
(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;
(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
①求证:∠B+∠D=180°;
②求AB的长.
11.如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.
(1)李明同学作了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP',可说明△APP'是直角三角形从而问题得到解决.请你说明其中理由并完成问题解答.
(2)如图丙,在正方形ABCD内有一点P,且AP=,BP=,PC=1:类比第一小题的方法求∠BPC的度数,并直接写出正方形ABCD的面积.
12.在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.
(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为 .
(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若AB=12,求CF的最大值.
中考数学二轮重难点复习讲义模型05 相似三角形中的常见五种基本模型(2份打包,原卷版+解析版): 这是一份中考数学二轮重难点复习讲义模型05 相似三角形中的常见五种基本模型(2份打包,原卷版+解析版),文件包含中考数学二轮重难点复习讲义模型05相似三角形中的常见五种基本模型原卷版doc、中考数学二轮重难点复习讲义模型05相似三角形中的常见五种基本模型解析版doc等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
模型03 全等三角形中的常见五种基本模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型03 全等三角形中的常见五种基本模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型03全等三角形中的常见五种基本模型原卷版docx、模型03全等三角形中的常见五种基本模型解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
中考数学二轮复习几何模型专题03 一线三垂直模型构造全等三角形(2份打包,原卷版+教师版): 这是一份中考数学二轮复习几何模型专题03 一线三垂直模型构造全等三角形(2份打包,原卷版+教师版),文件包含中考数学二轮复习几何模型专题03一线三垂直模型构造全等三角形原卷版doc、中考数学二轮复习几何模型专题03一线三垂直模型构造全等三角形教师版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。