题型06 几何最值(专题训练)-最新中考数学二轮复习讲义+专题(全国通用)
展开1、以专题复习为主。如选择题、填空题的专项练习,要把握准确度和时间的安排。加强对二次函数与几何图形结合的综合性试题、实际应用题等专题的练习,深化对常考题型的熟悉程度。
2、重视方法思维的训练。对初中数学所涉及的函数思想、方程思想、数形结合思想、分类讨论思想、转化与化归思想、整体思想等数学思想方法,要通过典型试题的训练,进一步渗透和深刻理解其内涵,重要处舍得投入时间与精力。强化解题过程中常用的配方法、待定系数法等通法。
3、拓宽思维的广度,培养多角度、多维度思考问题的习惯。将专项复习中的共性习题串连起来,通过一题多解,积极地探求解决问题的最优解法,这样,对于解决难度较大的压轴题会有很大的帮助。
题型六 几何最值(专题训练)
1.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是( )
2.如图,在中,,,,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )
A.5B.6C.7D.8
3.如图,在矩形纸片ABCD中,,,点E是AB的中点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是
A.B.3C.D.
4.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )
A.B.C.D.
5.如图,中,,,,是内部的一个动点,且满足,则线段长的最小值为________.
6.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .
7.如图,矩形中,,,点是矩形内一动点,且,则的最小值为_____.
8.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是______.
9.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为 .
10.如图,是等边三角形,,N是的中点,是边上的中线,M是上的一个动点,连接,则的最小值是________.
11.如图,在中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是 .
12.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为_____.
13.如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
14.如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把沿PE折叠,得到,连接CF.若AB=10,BC=12,则CF的最小值为_____.
15、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=_____.
16.如图所示,,点为内一点,,点分别在上,求周长的最小值_____.
17.在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;
(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;
①把图形补充完整(无需写画法); ②求的取值范围;
(2)如图2,求BE+AE+DE的最小值.
题型六 几何最值(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型六 几何最值(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型六几何最值专题训练原卷版docx、题型六几何最值专题训练解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
题型六 几何最值(专题训练)-中考数学二轮复习讲练测(全国通用): 这是一份题型六 几何最值(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型六几何最值专题训练解析版docx、题型六几何最值专题训练原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
题型六 几何最值(复习讲义)-中考数学二轮复习讲练测(全国通用): 这是一份题型六 几何最值(复习讲义)-中考数学二轮复习讲练测(全国通用),文件包含题型六几何最值复习讲义解析版docx、题型六几何最值复习讲义原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。