专题05不等式与不等式组(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】
展开这是一份专题05不等式与不等式组(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题05不等式与不等式组优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题05不等式与不等式组优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
1.(2023•内江)在函数y=x−1中,自变量x的取值范围在数轴上表示为( )
A.B.
C.D.
【分析】根据二次根式的被开方数为非负数,列出不等式,求出解集,即可判断.
【解答】解:根据题意可得:x﹣1≥0,
解得:x≥1.
故答案为:D.
【点评】本题主要考查了函数的知识、数轴的知识、二次根式的知识、一元一次不等式的知识,难度不大.
2.(2023•台州)不等式x+1≥2的解集在数轴上表示为( )
A.B.
C.D.
【分析】直接解一元一次不等式,再将解集在数轴上表示即可.
【解答】解:x+1≥2,
解得:x≥1,
在数轴上表示,如图所示:
.
故选:B.
【点评】此题主要考查了解一元一次不等式,正确解不等式是解题关键.
3.(2023•烟台)不等式组3m−2≥12−m>3的解集在同一条数轴上表示正确的是( )
A.
B.
C.
D.
【分析】利用解一元一次不等式组的方法把解集求出来,再在数轴上表示出来即可.
【解答】解:3m−2≥1①2−m>3②,
解不等式①得:m≥1,
解不等式②得:m<﹣1,
故不等式组的解集为:无解.
在数轴上表示为:.
故选:A.
【点评】本题主要考查解一元一次不等式组,数轴,解答的关键是对相应的知识的掌握.
4.(2023•宁波)不等式组x+1>0x−1≤0的解集在数轴上表示正确的是( )
A.B.
C.D.
【分析】解出每个不等式,取公共解集,再表示在数轴上即可.
【解答】解:x+1>0①x−1≤0②,
解不等式①得:x>﹣1,
解不等式②得:x≤1,
∴﹣1<x≤1,
解集表示在数轴上如图:
故选:C.
【点评】本题考查解一元一次不等式组,解题的关键是掌握取公共解集的方法.
5.(2023•遂宁)若关于x的不等式组4(x−1)>3x−15x>3x+2a的解集为x>3,则a的取值范围是( )
A.a>3B.a<3C.a≥3D.a≤3
【分析】用含a的式子表示出不等式的解,结合条件进行求解即可.
【解答】解:4(x−1)>3x−1①5x>3x+2a②,
解不等式①得:x>3,
解不等式②得:x>a,
∵不等式组的解集是x>3,
∴a≤3.
故选:D.
【点评】本题主要考查解一元一次不等式组,解答的关键是明确“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.
6.(2023•安徽)在数轴上表示不等式x−12<0的解集,正确的是( )
A.
B.
C.
D.
【分析】先求出不等式的解集,再在数轴上表示出来即可.
【解答】解:x−12<0,
x﹣1<0,
x<1,
在数轴上表示为,
故选:A.
【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.
7.关于x的不等式组x>m+35x−2<4x+1的整数解仅有4个,则m的取值范围是( )
A.﹣5≤m<﹣4B.﹣5<m≤﹣4C.﹣4≤m<﹣3D.﹣4<m≤﹣3
【分析】先解不等式组,再根据仅有4个整数解得出m的不等式组,再求解.
【解答】解:解不等式组得:m+3<x<3,
由题意得:﹣2≤m+3<﹣1,
解得:﹣5≤m<﹣4,
故选:A.
【点评】本题考查了一元一次不等式组的整数解,掌握解不等式组的方法是解题的关键.
8.(2023•丽水)小霞原有存款52元,小明原有存款70元.从这个月开始,小霞每月存15元零花钱,小明每月存12元零花钱,设经过n个月后小霞的存款超过小明,可列不等式为( )
A.52+15n>70+12nB.52+15n<70+12n
C.52+12n>70+15nD.52+12n<70+15n
【分析】利用小霞原来存款数+15×月数n>小明原来存款数+12×月数n,求出即可.
【解答】解:由题意可得:52+15n>70+12n.
故选:A.
【点评】此题主要考查了由实际问题抽象出一元一次不等式,得到两人存款数的关系式是解决本题的关键.
9.(2022•宿迁)如果x<y,那么下列不等式正确的是( )
A.x﹣1>y﹣1B.x+1>y+1C.﹣2x<﹣2yD.2x<2y
【分析】根据不等式的性质进行分析判断.
【解答】解:A、在不等式x<y的两边同时减去1,不等号的方向不变,即x﹣1<y﹣1,不符合题意;
B、在不等式x<y的两边同时加上1,不等号的方向不变,即x+1<y+1,不符合题意;
C、在不等式x<y的两边同时乘﹣2,不等号法方向改变,即﹣2x>﹣2y,不符合题意;
D、在不等式x<y的两边同时乘2,不等号的方向不变,即2x<2y,符合题意.
故选:D.
【点评】本题主要考查了不等式的性质.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.据此逐一判断即可.
10.(2022•阜新)不等式组−x−1≤20.5x−1<0.5的解集,在数轴上表示正确的是( )
A.B.
C.D.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【解答】解:由﹣x﹣1≤2,得:x≥﹣3,
由0.5x﹣1<0.5,得:x<3,
则不等式组的解集为﹣3≤x<3,
故选:A.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
11.(2022•六盘水)如图是某桥洞的限高标志,则能通过此桥洞的车辆高度是( )
A.6.5mB.6mC.5.5mD.4.5m
【分析】根据标志内容为限高5m可得,能通过此桥洞的车辆高度必须不能超过5m,
【解答】解:由标志内容可得,能通过此桥洞的车辆高度必须不能超过5m,
故选:D.
【点评】此题考查了不等式的应用能力,关键是能根据标志牌内容准确获得通过车辆高度的范围.
12.(2022•益阳)若x=2是下列四个选项中的某个不等式组的一个解,则这个不等式组是( )
A.x<1x<−1B.x<1x>−1C.x>1x<−1D.x>1x>−1
【分析】先把不等式组的解集求出来,然后根据解集判断x=2是否是解集一个解.
【解答】解:A、∵不等式组的解集为x<﹣1,∴x=2不在这个范围内,故A不符合题意;
B、∵不等式组的解集为﹣1<x<1,∴x=2不在这个范围内,故B不符合题意;
C、∵不等式组无解,∴x=2不在这个范围内,故C不符合题意;
D、∵不等式组的解集为x>1,∴x=2在这个范围内,故D符合题意.
故选:D.
【点评】本题考查了不等式组的解集,不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.
13.(2022•济宁)若关于x的不等式组x−a>0,7−2x>5仅有3个整数解,则a的取值范围是( )
A.﹣4≤a<﹣2B.﹣3<a≤﹣2C.﹣3≤a≤﹣2D.﹣3≤a<﹣2
【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.
【解答】解:解不等式x﹣a>0得:x>a,
解不等式7﹣2x>5得:x<1,
∵关于x的不等式组x−a>0,7−2x>5仅有3个整数解,
∴﹣3≤a<﹣2,
故选:D.
【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能根据不等式组的解集和已知得出结论是解此题的关键.
14.关于x,y的方程组2x−y=2k−3,x−2y=k的解中x与y的和不小于5,则k的取值范围为( )
A.k≥8B.k>8C.k≤8D.k<8
【分析】两个方程相减可得出x+y=k﹣3,根据x+y≥5列出关于k的不等式,解之可得答案.
【解答】解:把两个方程相减,可得x+y=k﹣3,
根据题意得:k﹣3≥5,
解得:k≥8.
所以k的取值范围是k≥8.
故选:A.
【点评】本题主要考查解一元一次不等式,解二元一次方程组,解题的关键是掌握解一元一次不等式的能力、不等式的基本性质等知识点.
15.(2022•邵阳)关于x的不等式组−13x>23−x,12x−1<12(a−2)有且只有三个整数解,则a的最大值是( )
A.3B.4C.5D.6
【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分表示出不等式组的解集,根据解集有且只有三个整数解,确定出a的范围即可.
【解答】解:−13x>23−x①12x−1<12(a−2)②,
由①得:x>1,
由②得:x<a,
解得:1<x<a,
∵不等式组有且仅有三个整数解,即2,3,4,
∴4<a≤5,
∴a的最大值是5,
故选:C.
【点评】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.
16.(2022•杭州)已知a,b,c,d是实数,若a>b,c=d,则( )
A.a+c>b+dB.a+b>c+dC.a+c>b﹣dD.a+b>c﹣d
【分析】根据不等式的性质判断A选项;根据特殊值法判断B,C,D选项.
【解答】解:A选项,∵a>b,c=d,
∴a+c>b+d,故该选项符合题意;
B选项,当a=2,b=1,c=d=3时,a+b<c+d,故该选项不符合题意;
C选项,当a=2,b=1,c=d=﹣3时,a+c<b﹣d,故该选项不符合题意;
D选项,当a=﹣1,b=﹣2,c=d=3时,a+b<c﹣d,故该选项不符合题意;
故选:A.
【点评】本题考查了不等式的性质,掌握不等式的两边同时加上或减去同一个整式(或相等的整式),不等号的方向不变是解题的关键.
17.(2021•攀枝花)某学校准备购进单价分别为5元和7元的A、B两种笔记本共50本作为奖品发放给学生,要求A种笔记本的数量不多于B种笔记本数量的3倍,不少于B种笔记本数量的2倍,则不同的购买方案种数为( )
A.1B.2C.3D.4
【分析】设购进A种笔记本为x本,则购进B种笔记本为(50﹣x)本,由题意:A种笔记本的数量不多于B种笔记本数量的3倍,不少于B种笔记本数量的2倍,列出不等式组,解不等式组,取正整数解即可.
【解答】解:设购进A种笔记本为x本,则购进B种笔记本为(50﹣x)本,
由题意得:x≤3(50−x)x≥2(50−x),
解得:3313≤x≤3712,
∵x为正整数,
∴x的取值为34,、35、36、37,
则不同的购买方案种数为4种,
故选:D.
【点评】本题考查了一元一次不等式组的应用,找出数量关系,列出一元一次不等式组是解题的关键.
18.(2021•日照)若不等式组x+6<4x−3x>m的解集是x>3,则m的取值范围是( )
A.m>3B.m≥3C.m≤3D.m<3
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【解答】解:解不等式x+6<4x﹣3,得:x>3,
∵x>m且不等式组的解集为x>3,
∴m≤3,
故选:C.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
19.(2021•南通)若关于x的不等式组2x+3>12x−a≤0恰有3个整数解,则实数a的取值范围是( )
A.7<a<8B.7<a≤8C.7≤a<8D.7≤a≤8
【分析】先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的3个整数解是5,6,7,再求出a的取值范围即可.
【解答】解:2x+3>12①x−a≤0②,
解不等式①,得x>4.5,
解不等式②,得x≤a,
所以不等式组的解集是4.5<x≤a,
∵关于x的不等式组2x+3>12x−a≤0恰有3个整数解(整数解是5,6,7),
∴7≤a<8,
故选:C.
【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式组的解集和不等式组的整数解得出a的范围是解此题的关键.
20.(2021•包头)定义新运算“⨂”,规定:a⨂b=a﹣2b.若关于x的不等式x⨂m>3的解集为x>﹣1,则m的值是( )
A.﹣1B.﹣2C.1D.2
【分析】根据定义新运算的法则得出不等式,解不等式;根据解集列方程即可.
【解答】解∵a⨂b=a﹣2b,
∴x⨂m=x﹣2m.
∵x⨂m>3,
∴x﹣2m>3,
∴x>2m+3.
∵关于x的不等式x⨂m>3的解集为x>﹣1,
∴2m+3=﹣1,
∴m=﹣2.
故选:B.
【点评】本题考查了新定义计算在不等式中的运用,读懂新定义并熟练的解不等式是解题的关键.
二.填空题(共20小题)
21.(2023•滨州)不等式组2x−4≥23x−7<8的解集为 3≤x<5 .
【分析】分别求出两个不等式的解集,再求其公共解集.
【解答】解:解不等式2x﹣4≥2,得x≥3,
解不等式3x﹣7<8,得x<5,
故不等式组2x−4≥23x−7<8的解集为3≤x<5.
故答案为:3≤x<5.
【点评】本题考查了解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
22.(2023•温州)不等式组x+3≥23x−12<4的解是 ﹣1≤x<3 .
【分析】先解出每个不等式的解集,即可得到不等式组的解集.
【解答】解:x+3≥2①3x−12<4②,
解不等式①,得:x≥﹣1,
解不等式②,得:x<3,
∴该不等式组的解集为﹣1≤x<3,
故答案为:﹣1≤x<3.
【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.
23.(2023•凉山州)不等式组5x+2>3(x−1)12x−1≤7−32x的所有整数解的和是 7 .
【分析】求出不等式组的解集,确定出整数解,求出之和即可.
【解答】解:5x+2>3(x−1)①12x−1≤7−32x②,
解不等式①得:x>−52,
解不等式②得x≤4,
∴不等式组的解集为−52<x≤4,
由x为整数,可取﹣2,﹣1,0,1,2,3,4,
则所有整数解的和为7,
故答案为:7.
【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.
24.(2023•泸州)关于x,y的二元一次方程组2x+3y=3+ax+2y=6的解满足x+y>22,写出a的一个整数值 6 .
【分析】解方程组得到x+y的关系式,再根据题目所给的x+y>22求出取值范围即可得出结论.
【解答】解:2x+3y=3+a①x+2y=6②
①﹣②得:x+y=a﹣3.
∵x+y>22,
∴a﹣3>22,
解得a>22+3.
∵4<8<9,
∴2<22<3.
∴5<22+3<6,
∵a取整数值,
∴a可取大于5的所有整数.
故本题答案为:6(答案不唯一).
【点评】本题考查了二元一次方程组、不等式以及无理数的估算,能正确估计一个无理数在哪两个整数之间是解决问题的关键.
25.(2023•宜宾)若关于x的不等式组2x+1>x+ax2+1≥52x−9所有整数解的和为14,则整数a的值为 2或﹣1 .
【分析】求出a﹣1<x≤5,根据所有整数解的和为14,列出关于a的不等式组,解得a的范围,即可求得答案.
【解答】解:2x+1>x+a①x2+1≥52x−9②,
解不等式①得:x>a﹣1,
解不等式②得:x≤5,
∴a﹣1<x≤5,
∵所有整数解的和为14,
∴不等式组的整数解为5,4,3,2或5,4,3,2,1,0,﹣1,
∴1≤a﹣1<2或﹣2≤a﹣1<﹣1,
∴2≤a<3或﹣1≤a<0,
∵a为整数,
∴a=2或a=﹣1,
故答案为:2或﹣1.
【点评】本题考查不等式组的整数解,解题的关键是根据题意列出关于a的不等式组.
26.(2022•德州)不等式组3(x+2)−x>41+2x3>x−1的解集是 ﹣1<x<4 .
【分析】解出每个不等式的解集,再找出公共解集即可.
【解答】解:3(x+2)−x>4①1+2x3>x−1②,
解不等式①得:x>﹣1,
解不等式②得:x<4,
∴不等式组的解集为﹣1<x<4,
故答案为:﹣1<x<4.
【点评】本题考查解不等式组,解题的关键是求出每个不等式的解集,能找出不等式的公共解集.
27.(2022•攀枝花)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程13x﹣1=0是关于x的不等式组x−2≤n2n−2x<0的关联方程,则n的取值范围是 1≤n<3 .
【分析】先解方程13x﹣1=0得x=3,再利用新定义得到1≤n2n−6<0,然后解n的不等式组即可.
【解答】解:解方程13x﹣1=0得x=3,
∵x=3为不等式组x−2≤n2n−2x<0的解,
∴1≤n2n−6<0,
解得1≤n<3,
即n的取值范围为:1≤n<3,
故答案为:1≤n<3.
【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.也考查了解一元一次方程的解.
28.(2022•襄阳)不等式组2x>x+1,4x−1>7的解集是 x>2 .
【分析】分别解出每个不等式,再求公共解集即可.
【解答】解:2x>x+1①4x−1>7②,
解不等式①得:x>1,
解不等式②得:x>2,
∴不等式组的解集为x>2,
故答案为:x>2.
【点评】本题考查解一元一次不等式组,解题的关键是掌握求不等式公共解集的方法.
29.(2022•丹东)不等式组x−5<12x>3的解集为 1.5<x<6 .
【分析】先解每一个不等式,再求它们的解集的公共部分.
【解答】解:分别解这两个不等式得:x<6x>1.5,
所以不等式组的解集为:1.5<x<6,
故答案为:1.5<x<6.
【点评】本题考查了不等式组的解法,熟练解一元一次不等式是解题的关键.
30.(2022•绵阳)已知关于x的不等式组2x+3≥x+m2x+53−3<2−x无解,则1m的取值范围是 0<1m≤15 .
【分析】分别求出每一个不等式的解集,根据口诀:大大小小找不到并结合不等式组的解集可得答案.
【解答】解:解不等式2x+3≥x+m,得:x≥m﹣3,
解不等式2x+53−3<2﹣x,得:x<2,
∵不等式组无解,
∴m﹣3≥2,
∴m≥5,
∴0<1m≤15,
故答案为:0<1m≤15.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
31.(2022•聊城)不等式组x−6≤2−x,x−1>3x2的解集是 x<﹣2 .
【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.
【解答】解:x−6≤2−x①x−1>3x2②,
解不等式①得:x≤4,
解不等式②得:x<﹣2;
所以不等式组的解集为:x<﹣2.
【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
32.(2022•绥化)不等式组3x−6>0x>m的解集为x>2,则m的取值范围为 m≤2 .
【分析】分别求出每一个不等式的解集,根据口诀:同大取大,结合不等式组的解集可得答案.
【解答】解:由3x﹣6>0,得:x>2,
∵不等式组的解集为x>2,
∴m≤2,
故答案为:m≤2.
【点评】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.
33.(2022•黑龙江)若关于x的一元一次不等式组2x−1<3x−a<0的解集为x<2,则a的取值范围是 a≥2 .
【分析】不等式组整理后,根据已知解集,利用同小取小法则判断即可确定出a的范围.
【解答】解:不等式组整理得:x<2x<a,
∵不等式组的解集为x<2,
∴a≥2.
故答案为:a≥2.
【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.
34.(2022•泰州)已知a=2m2﹣mn,b=mn﹣2n2,c=m2﹣n2(m≠n),用“<”表示a、b、c的大小关系为 b<c<a .
【分析】代数式的比较,常用的方法是作差法或者作商法,由于填空题不需要过程的特殊性,还可以考虑特殊值代入法.考虑到答案唯一,因此特殊值代入法最合适,也最简单.
【解答】解:解法1:令m=1,n=0,
则a=2,b=0,c=1.
∵0<1<2.
∴b<c<a.
解法2:∵a﹣c=(2m2﹣mn)﹣(m2﹣n2)=(m﹣0.5n)2+0.75n2>0;
∴c<a;
∵c﹣b=(m2﹣n2)﹣(mn﹣2n2)=(m﹣0.5n)2+.075n2>0;
∴b<c;
∴b<c<a.
【点评】本题考查不等式的性质,但是直接利用不等式的性质并不容易求解,考虑到填空题不需要过程,所以特殊值代入法也是最好的选择.
35.(2022•山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 32 元.
【分析】设该护眼灯可降价x元,根据“以利润率不低于20%的价格降价出售”列一元一次不等式,求解即可.
【解答】解:设该护眼灯可降价x元,
根据题意,得320−x−240240×100%≥20%,
解得x≤32,
故答案为:32.
【点评】本题考查了一元一次不等式的应用,理解题意并根据题意建立一元一次不等式是解题的关键.
36.(2022•达州)关于x的不等式组−x+a<23x−12≤x+1恰有3个整数解,则a的取值范围是 2≤a<3 .
【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【解答】解:−x+a<2①3x−12≤x+1②,
解不等式①得:x>a﹣2,
解不等式②得:x≤3,
∴不等式组的解集为:a﹣2<x≤3,
∵恰有3个整数解,
∴0≤a﹣2<1,
∴2≤a<3,
故答案为:2≤a<3.
【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.
37.(2022•内蒙古)关于x的不等式组5−3x≥−1a−x<0无解,则a的取值范围是 a≥2 .
【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.
【解答】解:5−3x≥−1①a−x<0②,
由①得:x≤2,
由②得:x>a,
∵不等式组无解,
∴a≥2,
故答案为:a≥2.
【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小解没了.
38.(2021•内江)已知非负实数a,b,c满足a−12=b−23=3−c4,设S=a+2b+3c的最大值为m,最小值为n,则nm的值为 1116 .
【分析】设a−12=b−23=3−c4=k,则a=2k+1,b=3k+2,c=3﹣4k,可得S=﹣4k+14;利用a,b,c为非负实数可得k的取值范围,从而求得m,n的值,结论可求.
【解答】解:设a−12=b−23=3−c4=k,则a=2k+1,b=3k+2,c=3﹣4k,
∴S=a+2b+3c=2k+1+2(3k+2)+3(3﹣4k)=﹣4k+14.
∵a,b,c为非负实数,
∴2k+1≥03k+2≥03−4k≥0,
解得:−12≤k≤34.
∴当k=−12时,S取最大值,当k=34时,S取最小值.
∴m=﹣4×(−12)+14=16,
n=﹣4×34+14=11.
∴nm=1116.
故答案为:1116.
【点评】本题主要考查了不等式的性质,非负数的应用,设a−12=b−23=3−c4=k是解题的关键.
39.(2021•黑龙江)已知关于x的不等式组3(x−a)≥2(x−1)2x−13≤2−x2有5个整数解,则a的取值范围是 −13<a≤0 .
【分析】解两个不等式得到不等式组的解集为3a﹣2≤x≤2,则可确定不等式组的整数解为2,1,0,﹣1,﹣2,于是可得到a不等式组,解不等式组可得a的范围.
【解答】解:3(x−a)≥2(x−1)①2x−13≤2−x2②,
由不等式①,得 x≥3a﹣2,
由不等式②,得 x≤2,
∴3a﹣2≤x≤2,
∵不等式组有5个整数解,
∴x=2,1,0,﹣1,﹣2,
∴﹣3<3a﹣2≤﹣2,
∴−13<a≤0,
故答案为−13<a≤0.
【点评】本题考查了不等式组的整数解,熟练掌握一元一次不等式组的解法是解题的关键,
40.(2021•黑龙江)关于x的一元一次不等式组2x−a>03x−4<5无解,则a的取值范围是 a≥6 .
【分析】分别解出这两个不等式的解集,然后根据不等式组无解,得到关于a的不等式,解不等式即可.
【解答】解:2x−a>0①3x−4<5②,
解不等式①得:x>12a,
解不等式②得:x<3,
∵不等式组无解,
∴12a≥3,
∴a≥6,
故答案为:a≥6.
【点评】本题考查了一元一次不等式组的解法,根据大大小小无解集列出不等式是解题的关键.
三.解答题(共20小题)
41.(2023•岳阳)解不等式组:x−4≤0①2(x+1)<3x②.
【分析】按照解一元一次不等式组的步骤,进行计算即可解答.
【解答】解:x−4≤0①2(x+1)<3x②,
解不等式①得:x≤4,
解不等式②得:x>2,
∴原不等式组的解集为:2<x≤4.
【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.
42.(2023•临沂)(1)解不等式5﹣2x<1−x2,并在数轴上表示解集;
(2)下面是某同学计算a2a−1−a﹣1的解题过程:
解:a2a−1−a﹣1
=a2a−1−(a−1)2a−1⋯①
=a2−(a−1)2a−1⋯②
=a2−a2+a−1a−1⋯③
=a−1a−1=1…④
上述解题过程从第几步开始出现错误?请写出正确的解题过程.
【分析】(1)按照解一元一次不等式的步骤,进行计算即可解答;
(2)利用异分母分式的加减法法则,进行计算即可解答.
【解答】解:(1)5﹣2x<1−x2,
2(5﹣2x)<1﹣x,
10﹣4x<1﹣x,
﹣4x+x<1﹣10,
﹣3x<﹣9,
x>3,
该不等式的解集在数轴上表示如图所示:
(2)上述解题过程从第①步开始出现错误,
正确的解题过程如下:
a2a−1−a﹣1
=a2a−1−(a+1)
=a2−(a2−1)a−1
=a2−a2+1a−1
=1a−1.
【点评】本题考查了解一元一次不等式,分式的加减法,准确熟练地进行计算是解题的关键.
43.(2023•扬州)解不等式组2(x−1)+1>−3x−1≤1+x3并把它的解集在数轴上表示出来.
【分析】按照解一元一次不等式组的步骤,进行计算即可解答.
【解答】解:2(x−1)+1>−3①x−1≤1+x3②,
解不等式①得:x>﹣1,
解不等式②得:x≤2,
∴原不等式组的解集为:﹣1<x≤2,
∴该不等式组的解集在数轴上表示如图所示:
【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.
44.(2023•天津)解不等式组2x+1≥x−1①4x−1≤x+2②,请结合题意填空,完成本题的解答.
(1)解不等式①,得 x≥﹣2 ;
(2)解不等式②,得 x≤1 ;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为 ﹣2≤x≤1 .
【分析】按照解一元一次不等式组的步骤,进行计算即可解答.
【解答】解:(1)解不等式①,得x≥﹣2;
(2)解不等式②,得x≤1;
(3)把不等式①和②的解集在数轴上表示如图所示:
(4)原不等式组的解集为﹣2≤x≤1;
故答案为:(1)x≥﹣2;
(2)x≤1;
(4)﹣2≤x≤1.
【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.
45.(2023•江西)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.
(1)求该班的学生人数;
(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?
【分析】(1)设该班的学生人数为x人,根据“如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵”,可得出关于x的一元一次方程,解之即可得出结论;
(2)设购买甲种树苗y棵,则购买乙种树苗(3×45+20﹣y)棵,利用总价=单价×数量,结合总价不超过5400元,可得出关于y的一元一次不等式,解之取其中的最大值,即可得出结论.
【解答】解:(1)设该班的学生人数为x人,
根据题意得:3x+20=4x﹣25,
解得:x=45.
答:该班的学生人数为45人;
(2)设购买甲种树苗y棵,则购买乙种树苗(3×45+20﹣y)棵,
根据题意得:30y+40(3×45+20﹣y)≤5400,
解得:y≥80,
∴y的最小值为80.
答:至少购买了甲树苗80棵.
【点评】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
46.(2023•新疆)(1)解不等式组2x<16①3x>2x+3②.
(2)金秋时节,新疆瓜果飘香,某水果店A种水果每千克5元,B种水果每千克8元,小明买了A、B两种水果共7千克,花了41元.A,B两种水果各买了多少千克?
【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集;
(2)设该水果店购进A种水果x千克,B种水果y千克,根据“该水果店购进A,B两种水果共7千克,且共花费41元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【解答】解:(1)解不等式①得:x<8,
解不等式②得:x>3,
则不等式组的解集为3<x<8;
(2)设该水果店购进A种水果x千克,B种水果y千克,
依题意得:x+y=75x+8y=41,
解得:x=5y=2,
答:该水果店购进A种水果5千克,B种水果2千克.
【点评】本题考查了解一元一次不等式组和二元一次方程组的应用,熟练掌握不等式组的解法和找准等量关系,正确列出二元一次方程组是解题的关键.
47.(2023•怀化)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.
(1)求原计划租用A种客车多少辆?这次研学去了多少人?
(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?
(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?
【分析】(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,根据这次去研学的人数不变,可得出关于x的一元一次方程,解之即可得出结论;
(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,根据“租用的25辆客车可乘坐人数不少于1200人,且租用的B种客车不超过7辆”,可得出关于y的一元一次不等式组,解之可得出y的取值范围,再结合y为正整数,即可得出各租车方案;
(3)利用总租金=每辆A种客车的租金×租用A种客车的辆数+每辆B种客车的租金×租用B种客车的辆数,可分别求出各选择各方案所需总租金,比较后,即可得出结论.
【解答】解:(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,
根据题意得:45x+30=60(x﹣6),
解得:x=26,
∴45x+30=45×26+30=1200.
答:原计划租用A种客车26辆,这次研学去了1200人;
(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,
根据题意得:45(25−y)+60y≥1200y≤7,
解得:5≤y≤7,
又∵y为正整数,
∴y可以为5,6,7,
∴该学校共有3种租车方案,
方案1:租用5辆B种客车,20辆A种客车;
方案2:租用6辆B种客车,19辆A种客车;
方案3:租用7辆B种客车,18辆A种客车;
(3)选择方案1的总租金为300×5+220×20=5900(元);
选择方案2的总租金为300×6+220×19=5980(元);
选择方案3的总租金为300×7+220×18=6060(元).
∵5900<5980<6060,
∴租用5辆B种客车,20辆A种客车最合算.
【点评】本题考查了一元一次不等式组的应用、一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次方程,(3)根据各数量之间的关系,求出选择各方案所需总租金.
48.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.
(1)求甲,乙两种书的单价分别为多少元;
(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?
【分析】(1)设甲种书的单价是x元,乙种书的单价是y元,根据“购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元”,可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设该校购买甲种书m本,则购买乙种书(100﹣m)本,利用总价=单价×数量,结合总价不超过3200元,可得出关于m的一元一次不等式,解之取其中的最大值,即可得出结论.
【解答】解:(1)设甲种书的单价是x元,乙种书的单价是y元,
根据题意得:2x+y=1003x+2y=165,
解得:x=35y=30.
答:甲种书的单价是35元,乙种书的单价是30元;
(2)设该校购买甲种书m本,则购买乙种书(100﹣m)本,
根据题意得:35m+30(100﹣m)≤3200,
解得:m≤40,
∴m的最大值为40.
答:该校最多可以购买甲种书40本.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
49.(2023•凉山州)凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.
(1)求雷波脐橙和资中血橙每千克各多少元?
(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?
【分析】(1)设雷波脐橙每千克x元,资中血橙每千克y元,根据“购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;购买雷波脐橙2千克,资中血橙3千克,共需72元人民币”,可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买雷波脐橙m千克,则购买资中血橙(100﹣m)千克,利用总价=单价×数量,结合总价不超过1440元,可得出关于m的一元一次不等式,解之取其中的最大值,即可得出结论.
【解答】解:(1)设雷波脐橙每千克x元,资中血橙每千克y元,
根据题意得:3x+2y=782x+3y=72,
解得:x=18y=12.
答:雷波脐橙每千克18元,资中血橙每千克12元;
(2)设购买雷波脐橙m千克,则购买资中血橙(100﹣m)千克,
根据题意得:18m+12(100﹣m)≤1440,
解得:m≤40,
∴m的最大值为40.
答:他最多能购买雷波脐橙40千克.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
50.(2022•阜新)某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.
(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?
(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?
【分析】(1)设生产A产品x件,B产品y件,根据题意列出方程组,求出即可;
(2)设B产品生产m件,则A产品生产(180﹣m)件,根据题意列出不等式组,求出即可.
【解答】解:(1)设生产A产品x件,B产品y件,
根据题意,得100x+75y=8250,(120−100)x+(100−75)y=2350.
解这个方程组,得x=30,y=70.,
所以,生产A产品30件,B产品70件.
(2)设B产品生产m件,则A产品生产(180﹣m)件,
根据题意,得(100﹣75)m+(120﹣100)(180﹣m)≥4300,
解这个不等式,得m≥140.
所以,B产品至少生产140件.
【点评】本题考查了二元一次方程组和一元一次不等式组的应用,能根据题意列出方程组和不等式组是解此题的关键.
51.(2022•资阳)北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.
(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?
(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?
【分析】(1)根据题意,设乙种型号的单价是x元,则甲种型号的单价是(x+20)元,根据“购买甲、乙两种型号各10个共需1760元”的等量关系列出一元一次方程,解出方程即可得出答案;
(2)根据题意,设购买甲种型号的“冰墩墩”a个,则购买乙种型号的“冰墩墩”(50﹣a)个,根据“计划用不超过4500元”列出不等式,即可得出答案.
【解答】解:(1)设乙种型号的单价是x元,则甲种型号的单价是(x+20)元,
根据题意得:10(x+20)+10x=1760,
解得:x=78,
∴x+20=78+20=98,
答:甲种型号的单价是98元,乙种型号的单价是78元;
(2)设购买甲种型号的“冰墩墩”a个,则购买乙种型号的“冰墩墩”(50﹣a)个,
根据题意得:98a+78(50﹣a)≤4500,
解得:a≤30,
∴a最大值是30,
答:最多可购买甲种型号的“冰墩墩”30个.
【点评】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意找出等量关系和数量关系是本题的关键.
52.(2022•朝阳)某中学要为体育社团购买一些篮球和排球,若购买3个篮球和2个排球,共需560元;若购买2个篮球和4个排球,共需640元.
(1)求每个篮球和每个排球的价格分别是多少元;
(2)该中学决定购买篮球和排球共10个,总费用不超过1100元,那么最多可以购买多少个篮球?
【分析】(1)设每个篮球的价格是x元,每个排球的价格是y元,可得:3x+2y=5602x+4y=640,即可解得每个篮球的价格是120元,每个排球的价格是100元;
(2)设购买m个篮球,可得:120m+100(10﹣m)≤1100,即可解得最多可以购买5个篮球.
【解答】解:(1)设每个篮球的价格是x元,每个排球的价格是y元,
根据题意得:3x+2y=5602x+4y=640,
解得x=120y=100,
∴每个篮球的价格是120元,每个排球的价格是100元;
(2)设购买m个篮球,
根据题意得:120m+100(10﹣m)≤1100,
解得m≤5,
答:最多可以购买5个篮球.
【点评】本题考查二元一次方程组和一元一次不等式的应用,解题的关键是读懂题意,列出方程组和不等式.
53.(2022•六盘水)钢钢准备在重阳节购买鲜花到敬老院看望老人,现将自己在劳动课上制作的竹篮和陶罐拿到学校的“跳蚤市场”出售,以下是购买者的出价:
(1)根据对话内容,求钢钢出售的竹篮和陶罐数量;
(2)钢钢接受了钟钟的报价,交易后到花店购买单价为5元/束的鲜花,剩余的钱不超过20元,求有哪几种购买方案.
【分析】(1)设出售的竹篮x个,陶罐y个,根据“每个竹篮5元,每个陶罐12元共需61元;每个竹篮6元,每个陶罐10元共需60元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买鲜花a束,根据总价=单价×数量结合剩余的钱不超过20元,即可得出关于a的一元一次不等式组,解之取其中的整数值,即可得出各购买方案.
【解答】解:(1)设出售的竹篮x个,陶罐y个,依题意有:
5x+12y=616x+10y=60,
解得:x=5y=3.
故出售的竹篮5个,陶罐3个;
(2)设购买鲜花a束,依题意有:
0<61﹣5a≤20,
解得8.2≤a<12.2,
∵a为整数,
∴共有4种购买方案,方案一:购买鲜花9束;方案二:购买鲜花10束;方案三:购买鲜花11束;方案四:购买鲜花12束.
【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
54.(2022•安顺)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.
(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?
(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?
【分析】(1)设普通水稻的亩产量是x千克,则杂交水稻的亩产量是2x千克,利用种植亩数=总产量÷亩产量,结合A块试验田比B块试验田少4亩,即可得出关于x的分式方程,解之即可得出普通水稻的亩产量,再将其代入2x中即可求出杂交水稻的亩产量;
(2)设把y亩B块试验田改种杂交水稻,利用总产量=亩产量×种植亩数,结合总产量不低于17700千克,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
【解答】解:(1)设普通水稻的亩产量是x千克,则杂交水稻的亩产量是2x千克,
依题意得:7200x−96002x=4,
解得:x=600,
经检验,x=600是原方程的解,且符合题意,
则2x=2×600=1200.
答:普通水稻的亩产量是600千克,杂交水稻的亩产量是1200千克;
(2)设把y亩B块试验田改种杂交水稻,
依题意得:9600+600(7200600−y)+1200y≥17700,
解得:y≥1.5.
答:至少把1.5亩B块试验田改种杂交水稻.
【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
55.(2022•荆门)已知关于x的不等式组x+1+2a>0x−3−2a<0(a>﹣1).
(1)当a=12时,解此不等式组;
(2)若不等式组的解集中恰含三个奇数,求a的取值范围.
【分析】(1)把a的值代入再求解;
(2)先解不等式组,再根据题意列不等式求解.
【解答】解:(1)当a=12时,不等式组化为:x+2>0x−4<0,
解得:﹣2<x<4;
(2)解不等式组得:﹣2a﹣1<x<2a+3,
解法一:令y1=﹣2a﹣1,y2=2a+3,(a>﹣1)
如图所示:
当a=0时.x只有一个奇数解1,不合题意;
当a=1,x有奇数解1,﹣1,3,符合题意;
∵不等式组的解集中恰含三个奇数,
∴0<a≤1.
解法二:∵−2a−2+2a+32=1,且不等式组的解集中恰含三个奇数,
∴不等式组的解集的三个奇数必为:﹣1,1,3,
∴﹣3≤﹣2a﹣1<﹣1,且3<2a+3≤5,
解得:0<a≤1.
【点评】本题考查了不等式的解法,正确运算是解题的关键.
56.(2022•湘西州)为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.
(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?
(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?
【分析】(1)设原计划篮球买x个,足球买y个,根据:“恰好能够购买篮球和足球共60个、原计划募捐5600元”列方程组即可解答;
(2)设篮球能买a个,则足球(80﹣a)个,根据“实际收到捐款共6890元”列不等式求解即可解答.
【解答】解:(1)设原计划篮球买x个,足球买y个,
根据题意得:x+y=60100x+80y=5600,
解得:x=40y=20.
答:原计划篮球买40个,足球买20个.
(2)设篮球能买a个,则足球(80﹣a)个,
根据题意得:100a+80(80﹣a)≤6890,
解得:a≤24.5,
答:篮球最多能买24个.
【点评】本题考查了二元一次方程组、一元一次不等式的应用,解决本题的关键是根据题意列出方程组和不等式.
57.(2022•绵阳)某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:
请解答下列问题:
(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg,当日全部售出,求这两种水果获得的总利润?
(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?
【分析】(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,根据该经营户用1700元批发了菠萝和苹果共300kg,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论;
(2)设购进mkg菠萝,则购进1700−5m6kg苹果,根据“菠萝的进货量不低于88kg,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m,1700−5m6均为正整数,即可得出各进货方案.
【解答】解:(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,
依题意得:x+y=3005x+6y=1700,
解得:x=100y=200,
∴(6﹣5)x+(8﹣6)y=(6﹣5)×100+(8﹣6)×200=500(元).
答:这两种水果获得的总利润为500元.
(2)设购进mkg菠萝,则购进1700−5m6kg苹果,
依题意得:m≥88(6−5)m+(8−6)×1700−5m6>500,
解得:88≤m<100.
又∵m,1700−5m6均为正整数,
∴m可以为88,94,
∴该经营户第二天共有2种批发水果的方案,
方案1:购进88kg菠萝,210kg苹果;
方案2:购进94kg菠萝,205kg苹果.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
58.(2022•西藏)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本和钢笔作为纪念品.已知每本笔记本比每支钢笔多2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.
(1)笔记本和钢笔的单价各多少元?
(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?
【分析】(1)可设每支钢笔x元,则每本笔记本(x+2)元,根据其数量相同,可列得方程,解方程即可;
(2)可设购买y本笔记本,则购买钢笔(50﹣y)支,根据总费用不超过540元,可列一元一次不等式,解不等式即可.
【解答】解:(1)设每支钢笔x元,依题意得:
240x+2=200x,
解得:x=10,
经检验:x=10是原方程的解,
故笔记本的单价为:10+2=12(元),
答:笔记本每本12元,钢笔每支10元;
(2)设购买y本笔记本,则购买钢笔(50﹣y)支,依题意得:
12y+10(50﹣y)≤540,
解得:y≤20,
故最多购买笔记本20本.
【点评】本题主要考查一元一次不等式的应用,分式方程的应用,解答的关键是理解清楚题意,找到等量关系.
59.(2022•牡丹江)某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,请解答下列问题:
(1)求A,B两种防疫用品每箱的成本;
(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?
(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)
【分析】(1)设B种防疫用品的成本为x元/箱,则A种防疫用品的成本为(x+500)元/箱,利用数量=总价÷单价,结合用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,即可得出关于x的分式方程,解之经检验后即可得出B种防疫用品的成本,再将其代入(x+500)中即可求出A种防疫用品的成本;
(2)设生产m箱B种防疫用品,则生产(50﹣m)箱A种防疫用品,根据“该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出该工厂共有6种生产方案;
(3)设(2)中的生产成本为w元,利用生产成本=A种防疫用品的成本×生产数量+B种防疫用品的成本×生产数量,即可得出关于w关于m的函数关系式,利用一次函数的性质即可求出(2)中最低成本,设购买a台甲种设备,b台乙种设备,利用总价=单价×数量,即可得出关于a,b的二元一次方程,结合a,b均为正整数,即可得出各购买方案,再将其代入a+b中即可得出结论.
【解答】解:(1)设B种防疫用品的成本为x元/箱,则A种防疫用品的成本为(x+500)元/箱,
依题意得:6000x+500=4500x,
解得:x=1500,
经检验,x=1500是原方程的解,且符合题意,
∴x+500=1500+500=2000.
答:A种防疫用品的成本为2000元/箱,B种防疫用品的成本为1500元/箱.
(2)设生产m箱B种防疫用品,则生产(50﹣m)箱A种防疫用品,
依题意得:2000(50−m)+1500m≤90000m≤25,
解得:20≤m≤25.
又∵m为整数,
∴m可以为20,21,22,23,24,25,
∴该工厂共有6种生产方案.
(3)设(2)中的生产成本为w元,则w=2000(50﹣m)+1500m=﹣500m+100000,
∵﹣500<0,
∴w随m的增大而减小,
∴当m=25时,w取得最小值,最小值=﹣500×25+100000=87500.
设购买a台甲种设备,b台乙种设备,
依题意得:2500a+3500b=87500,
∴a=35−75b.
又∵a,b均为正整数,
∴a=28b=5或a=21b=10或a=14b=15或a=7b=20,
∴a+b=33或31或29或27.
∵33>31>29>27,
∴共有4种购买方案,最多可购买甲,乙两种设备共33台.
【点评】本题考查了分式方程的应用、一元一次不等式的应用、一次函数的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)找准等量关系,正确列出二元一次方程.
60.2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.
(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.
(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?
【分析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价×进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,利用总利润=每个的销售利润×销售数量(购进数量),即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【解答】解:(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,
依题意得:x+y=18080x+50y=11400,
解得:x=80y=100.
答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.
(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,
依题意得:(60﹣50)m+(100﹣80)(180﹣m)≥2900,
解得:m≤70.
答:购进的“冰墩墩”挂件不能超过70个.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
水果品种
梨子
菠萝
苹果
车厘子
批发价格(元/kg)
4
5
6
40
零售价格(元/kg)
5
6
8
50
相关试卷
这是一份专题31图形的旋转(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题31图形的旋转优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题31图形的旋转优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共127页, 欢迎下载使用。
这是一份专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题32图形的相似优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题32图形的相似优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共126页, 欢迎下载使用。
这是一份专题31图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题32图形的相似优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题32图形的相似优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共126页, 欢迎下载使用。