终身会员
搜索
    上传资料 赚现金

    专题17二次函数与方程、不等式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题17二次函数与方程、不等式(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】(原卷版).docx
    • 解析
      专题17二次函数与方程、不等式(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】(解析版).docx
    专题17二次函数与方程、不等式(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】(原卷版)第1页
    专题17二次函数与方程、不等式(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】(原卷版)第2页
    专题17二次函数与方程、不等式(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】(原卷版)第3页
    专题17二次函数与方程、不等式(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】(解析版)第1页
    专题17二次函数与方程、不等式(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】(解析版)第2页
    专题17二次函数与方程、不等式(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】(解析版)第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题17二次函数与方程、不等式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】

    展开

    这是一份专题17二次函数与方程、不等式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题17二次函数与方程不等式优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题17二次函数与方程不等式优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。


    1.(2023•衡阳)已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是( )
    A.x3<x1<x2<x4B.x1<x3<x4<x2
    C.x1<x2<x3<x4D.x3<x4<x1<x2
    【分析】画出抛物线y=x2+2x﹣3,直线y=m,直线y=n,根据一元二次方程与二次函数的关系,观察图象可得答案.
    【解答】解:关于x的方程x2+2x﹣3﹣m=0的解为抛物线y=x2+2x﹣3与直线y=m的交点的横坐标,
    关于x的方程x2+2x﹣3﹣n=0的解为抛物线y=x2+2x﹣3与直线y=n的交点的横坐标,
    如图:
    由图可知,x1<x3<x4<x2,
    故选:B.
    【点评】本题考查一元二次方程与二次函数的关系,解题的关键是画出图象,数形结合解决问题.
    2.(2023•宁波)已知二次函数y=ax2﹣(3a+1)x+3(a≠0),下列说法正确的是( )
    A.点(1,2)在该函数的图象上
    B.当a=1且﹣1≤x≤3时,0≤y≤8
    C.该函数的图象与x轴一定有交点
    D.当a>0时,该函数图象的对称轴一定在直线x=32的左侧
    【分析】将点(1,2)代入抛物线的解析式即可对选项A进行判断;将a=1代入抛物线的解析式求出顶点坐标为(2,﹣1),据此可对选项B进行判断;令y=0,则ax2﹣(3a+1)x+3=0,然后判断该方程判别式的符号即可对选项C进行判断;求出抛物线的解析式为:x=32+12a,然后根据a>0得32+12a>32,据此可对选项C进行判断.
    【解答】解:①对于y=ax2﹣(3a+1)x+3,当x=1时,y=a×12﹣(3a+1)×1+3=2﹣2a
    ∵a≠0,
    ∴y=2﹣2a≠2,
    ∴点A(1,2)不在该函数的图象上,
    故选项A不正确;
    ②当x=1时,抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,
    ∴抛物线的顶点坐标为(2,﹣1),
    即当x=2时,y=﹣1<0,
    故得选项B不正确;
    ③令y=0,则ax2﹣(3a+1)x+3=0,
    ∵Δ=[﹣(3a+1)]2﹣4a×3=(3a﹣1)2≥0,
    ∴该函数的图象与x轴一定有交点,
    故选项C正确;
    ④∵该抛物线的对称轴为:x=3a+12a=32+12a,
    又∵a>0,
    ∴32+12a>32,
    ∴该抛物线的对称轴一定在直线x=32的右侧,
    故选项D不正确.
    故选:C.
    【点评】此题主要考查了二次函数的图象和性质,解答此题的关键是熟练掌握求二次函数的顶点、对称轴以及判定与x轴有无交点的方法.
    3.(2023•自贡)经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=−12x2+bx﹣b2+2c(x为自变量)与x轴有交点,则线段AB长为( )
    A.10B.12C.13D.15
    【分析】根据二次函数的性质可知2−3b+4b+c−12=−b2×(−12),再根据经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=−12x2+bx﹣b2+2c(x为自变量)与x轴有交点,可知Δ=b2﹣4×(−12)×(﹣b2+2c)≥0,然后可以得到b和c的关系,求出b和c的值,再根据点A和点B的坐标,即可计算出线段AB长.
    【解答】解:∵经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=−12x2+bx﹣b2+2c(x为自变量)与x轴有交点,
    ∴2−3b+4b+c−12=−b2×(−12),Δ=b2﹣4×(−12)×(﹣b2+2c)≥0,
    ∴b=c+1,b2≤4c,
    ∴(c+1)2≤4c,
    ∴(c﹣1)2≤0,
    ∴c﹣1=0,
    解得c=1,
    ∴b=c+1=2,
    ∴AB=|(4b+c﹣1)﹣(2﹣3b)|
    =|4b+c﹣1﹣2+3b|
    =|7b+c﹣3|
    =|7×2+1﹣3|
    |14+1﹣3|
    =12,
    故选:B.
    【点评】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,求出b和c的值.
    4.(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是( )
    A.1个B.2个C.3个D.4个
    【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);
    ①函数对称轴在y轴右侧,则ab<0,而c>0,故abc<0,
    故①正确,符合题意;
    ②∵x=−b2a=1,即b=﹣2a,
    而x=﹣1时,y=0,即a﹣b+c=0,
    ∴a+2a+c=0,
    ∴3a+c=0.
    ∴②正确,符合题意;
    ③由图象知,当y>0时,x的取值范围是﹣1<x<3,
    ∴③错误,不符合题意;
    ④从图象看,当x=﹣2时,y1<0,
    当x=2时,y2>0,
    ∴有y1<0<y2,
    故④正确,符合题意;
    故选:C.
    【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.
    5.(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
    下列结论不正确的是( )
    A.抛物线的开口向下
    B.抛物线的对称轴为直线x=12
    C.抛物线与x轴的一个交点坐标为(2,0)
    D.函数y=ax2+bx+c的最大值为254
    【分析】根据表格中的数据,可以求出抛物线的解析式,然后化为顶点式和交点式,即可判断各个选项中的说法是否正确.
    【解答】解:由表格可得,
    4a−2b+c=0a−b+c=4c=6,
    解得a=−1b=1c=6,
    ∴y=﹣x2+x+6=﹣(x−12)2+254=(﹣x+3)(x+2),
    ∴该抛物线的开口向下,故选项A正确,不符合题意;
    该抛物线的对称轴是直线x=12,故选项B正确,不符合题意,
    ∵当x=﹣2时,y=0,
    ∴当x=12×2﹣(﹣2)=3时,y=0,故选项C错误,符合题意;
    函数y=ax2+bx+c的最大值为254,故选项D正确,不符合题意;
    故选:C.
    【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,求出抛物线的解析式.
    6.(2022•铜仁市)如图,若抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,若∠OAC=∠OCB.则ac的值为( )
    A.﹣1B.﹣2C.−12D.−13
    【分析】设A(x1,0),B(x2,0),C(0,c),由∠OAC=∠OCB可得△OAC∽△OCB,从而可得|x1•x2|=c2=﹣x1•x2,由一元二次方程根与系数的关系可得x1•x2=ca,进而求解.
    【解答】解:设A(x1,0),B(x2,0),C(0,c),
    ∵二次函数y=ax2+bx+c的图象过点C(0,c),
    ∴OC=c,
    ∵∠OAC=∠OCB,OC⊥AB,
    ∴△OAC∽△OCB,
    ∴OAOC=OCOB,
    ∴OC2=OA•OB,
    即|x1•x2|=c2=﹣x1•x2,
    令ax2+bx+c=0,
    根据根与系数的关系知x1•x2=ca,
    ∴−x1x2=−ca=c2,
    故ac=﹣1,
    故选:A.
    【点评】本题考查了二次函数y=ax2+bx+c(a≠0)与关于x的方程ax2+bx+c=0(a≠0)之间的相互转换,同时要将线段的长转化为点的坐标之间的关系,灵活运用数形结合的思想是解题关键.
    7.(2022•潍坊)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为( )
    A.−14B.14C.﹣4D.4
    【分析】抛物线与x轴有一个交点,y=0的方程就有两个相等的实数根,根的判别式就等于0.
    【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,
    ∴方程x2+x+c=0有两个相等的实数根,
    ∴Δ=b2﹣4ac=12﹣4×1•c=0,
    ∴c=14.
    故选:B.
    【点评】本题考查方程与二次函数的关系,数形结合思想是解这类题的关键.
    8.(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是( )
    A.a>0
    B.当x>﹣1时,y的值随x值的增大而增大
    C.点B的坐标为(4,0)
    D.4a+2b+c>0
    【分析】由抛物线开口方向可判断A,根据抛物线对称轴可判断B,由抛物线的轴对称性可得点B的坐标,从而判断C,由(2,4a+2b+c)所在象限可判断D.
    【解答】解:A、由图可知:抛物线开口向下,a<0,故选项A错误,不符合题意;
    B、∵抛物线对称轴是直线x=1,开口向下,
    ∴当x>1时y随x的增大而减小,x<1时y随x的增大而增大,故选项B错误,不符合题意;
    C、由A(﹣1,0),抛物线对称轴是直线x=1可知,B坐标为(3,0),故选项C错误,不符合题意;
    D、抛物线y=ax2+bx+c过点(2,4a+2b+c),由B(3,0)可知:抛物线上横坐标为2的点在第一象限,
    ∴4a+2b+c>0,故选项D正确,符合题意;
    故选:D.
    【点评】本题考查二次函数图象与系数的关系,解题的关键是掌握二次函数图象的性质,数形结合解决问题.
    9.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
    ①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
    A.②③④B.①②④C.①③D.①②③④
    【分析】由抛物线解析式可得抛物线顶点坐标,从而可判断①②,由二次函数图象平移的规律可判断③,令y=0可得抛物线与x轴交点横坐标,从而判断④.
    【解答】解:∵y=(x﹣2)2﹣9,
    ∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),
    ∴x=2时,y取最小值﹣9,①正确.
    ∵x>2时,y随x增大而增大,
    ∴y2>y1,②正确.
    将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.
    令(x﹣2)2﹣9=0,
    解得x1=﹣1,x2=5,
    ∴5﹣(﹣1)=6,④正确.
    故选:B.
    【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.
    10.(2022•台湾)已知坐标平面上有二次函数y=﹣(x+6)2+5的图形,函数图形与x轴相交于(a,0)、(b,0)两点,其中a<b.今将此函数图形往上平移,平移后函数图形与x轴相交于(c,0)、(d,0)两点,其中c<d,判断下列叙述何者正确?( )
    A.(a+b)=(c+d),(b﹣a)<(d﹣c)
    B.(a+b)=(c+d),(b﹣a)>(d﹣c)
    C.(a+b)<(c+d),(b﹣a)<(d﹣c)
    D.(a+b)<(c+d),(b﹣a)>(d﹣c)
    【分析】画出图形,利用抛物线的对称性判断出a+b=c+d=﹣12,可得结论.
    【解答】解:如图,
    ∵y=﹣(x+6)2+5的对称轴是直线x=﹣6,平移后的抛物线对称轴不变,
    ∴a+b2=−6,c+d2=−6,
    ∴a+b=﹣12,c+d=﹣12,
    ∴a+b=c+d,且b﹣a<d﹣c,
    故选:A.
    【点评】本题考查二次函数的性质,抛物线与x轴的交点,二次函数的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    11.(2021•铜仁市)已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a(x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是( )
    A.5B.﹣1C.5或1D.﹣5或﹣1
    【分析】先利用二次函数的性质得到两抛物线的对称轴,然后利用A点或B点向右平移得到点(4,0)得到m的值.
    【解答】解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,
    ∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;
    当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,
    即m的值为5或1.
    故选:C.
    【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
    12.(2021•黄石)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的自变量x与函数值y的部分对应值如下表:
    且当x=32时,对应的函数值y<0.有以下结论:
    ①abc>0;②m+n<−203;③关于x的方程ax2+bx+c=0的负实数根在−12和0之间;④P1(t﹣1,y1)和P2(t+1,y2)在该二次函数的图象上,则当实数t>13时,y1>y2.
    其中正确的结论是( )
    A.①②B.②③C.③④D.②③④
    【分析】将(0,2),(1,2)代入y=ax2+bx+c得b=−ac=2,可得二次函数为:y=ax2﹣ax+2,根据当x=32时,对应的函数值y<0,有a<−83,b>83,即得a<0,b>0,c>0,故①不正确;由m=2a+2,n=2a+2,结合a<−83,可得m+n<−203,故②正确;由抛物线过(0,2),(1,2),得抛物线对称轴为x=12,而当x=32时,对应的函数值y<0,可知当x=−12时,对应的函数值y<0,关于x的方程ax2+bx+c=0的负实数根在−12和0之间,故③正确;由y1=a(t﹣1)2﹣a(t﹣1)+2,y2=a(t+1)2﹣a(t+1)+2,知a(t﹣1)2﹣a(t﹣1)+2>a(t+1)2﹣a(t+1)+2时,t>12,故④不正确,
    【解答】解:将(0,2),(1,2)代入y=ax2+bx+c得:
    2=c2=a+b+c,解得b=−ac=2,
    ∴二次函数为:y=ax2﹣ax+2,
    ∵当x=32时,对应的函数值y<0,
    ∴94a−32a+2<0,
    ∴a<−83,
    ∴﹣a>83,即b>83,
    ∴a<0,b>0,c>0,
    ∴abc<0,故①不正确;
    ∵x=﹣1时y=m,x=2时y=n,
    ∴m=a+a+2=2a+2,n=4a﹣2a+2=2a+2,
    ∴m+n=4a+4,
    ∵a<−83,
    ∴m+n<−203,故②正确;
    ∵抛物线过(0,2),(1,2),
    ∴抛物线对称轴为x=12,
    又∵当x=32时,对应的函数值y<0,
    ∴根据对称性:当x=−12时,对应的函数值y<0,
    而x=0时y=2>0,
    ∴抛物线与x轴负半轴交点横坐标在−12和0之间,
    ∴关于x的方程ax2+bx+c=0的负实数根在−12和0之间,故③正确;
    ∵P1(t﹣1,y1)和P2(t+1,y2)在该二次函数的图象上,
    ∴y1=a(t﹣1)2﹣a(t﹣1)+2,y2=a(t+1)2﹣a(t+1)+2,
    若y1>y2,则a(t﹣1)2﹣a(t﹣1)+2>a(t+1)2﹣a(t+1)+2,
    即a(t﹣1)2﹣a(t﹣1)>a(t+1)2﹣a(t+1),
    ∵a<0,
    ∴(t﹣1)2﹣(t﹣1)<(t+1)2﹣(t+1),
    解得t>12,故④不正确,
    故选:B.
    【点评】本题考查二次函数的综合应用,题目综合性较强,解题的关键是熟练掌握二次函数基本性质及图象特征,根据已知列方程或不等式.
    13.(2021•赤峰)已知抛物线y=ax2+bx+c上的部分点的横坐标x与纵坐标y的对应值如表:
    以下结论正确的是( )
    A.抛物线y=ax2+bx+c的开口向下
    B.当x<3时,y随x增大而增大
    C.方程ax2+bx+c=0的根为0和2
    D.当y>0时,x的取值范围是0<x<2
    【分析】将表格内点坐标代入y=ax2+bx+c中求出抛物线解析式,然后逐个判断求解.
    【解答】解:将(﹣1,3),(0,0),(1,﹣1)代入y=ax2+bx+c得:
    3=a−b+c0=c−1=a+b+c,
    解得a=1b=−2c=0,
    ∴y=x2﹣2x.
    A.∵a=1,
    ∴抛物线开口向上,
    故A错误,不符合题意.
    B.∵图象对称轴为直线x=1,且开口向上,
    ∴x>1时,y随x增大而增大,
    故B错误,不符合题意.
    C.∵y=x2﹣2x=x(x﹣2),
    ∴当x=0或x=2时y=0,
    故C正确,符合题意.
    D.∵抛物线开口向上,与x轴交点坐标为(0,0),(2,0),
    ∴x<0或x>2时,y>0,
    故D错误,不符合题意.
    故选:C.
    【点评】本题考查二次函数的性质,解题关键是熟练掌握二次函数的性质,求出二次函数解析式求解
    14.(2021•黔东南州)如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为( )
    A.1B.2C.3D.4
    【分析】根据题意可推出OB=2,OA=1,AD=OC=2,根据平移的性质及抛物线的对称性可知阴影部分的面积等于矩形OCDA的面积,利用矩形的面积公式进行求解即可.
    【解答】解:如图所示,
    过抛物线L2的顶点D作CD∥x轴,与y轴交于点C,
    则四边形OCDA是矩形,
    ∵抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),
    ∴OB=2,OA=1,
    将抛物线L1向下平移两个单位长度得抛物线L2,则AD=OC=2,
    根据平移的性质及抛物线的对称性得到阴影部分的面积等于矩形OCDA的面积,
    ∴S阴影部分=S矩形OCDA=OA•AD=1×2=2.
    故选:B.
    【点评】本题考查抛物线与x轴的交点、二次函数的性质及二次函数图象与几何变换,解题的关键是根据平移的性质及抛物线的对称性得到阴影部分的面积等于矩形OCDA的面积.
    15.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为( )
    A.−214或﹣3B.−134或﹣3C.214或﹣3D.134或﹣3
    【分析】分两种情形:如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣1≤x≤3)相切时,直线y=x+b与该新图象恰好有三个公共点,分别求解即可.
    【解答】解:二次函数解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),
    当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,
    则抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),B(3,0),
    把抛物线y=﹣x2+2x+3图象x轴上方的部分沿x轴翻折到x轴下方,则翻折部分的抛物线解析式为y=(x﹣1)2﹣4(﹣1≤x≤3),顶点坐标M(1,﹣4),
    如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,
    ∴3+b=0,解得b=﹣3;
    当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣1≤x≤3)相切时,直线y=x+b与该新图象恰好有三个公共点,
    即(x﹣1)2﹣4=x+b有相等的实数解,整理得x2﹣3x﹣b﹣3=0,△=32﹣4(﹣b﹣3)=0,解得b=−214,
    所以b的值为﹣3或−214,
    故选:A.
    【点评】此题主要考查了翻折的性质,一元二次方程根的判别式,抛物线的性质,确定翻折后抛物线的关系式;利用数形结合的方法是解本题的关键,画出函数图象是解本题的难点.
    16.(2021•陕西)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:
    下列各选项中,正确的是( )
    A.这个函数的图象开口向下
    B.这个函数的图象与x轴无交点
    C.这个函数的最小值小于﹣6
    D.当x>1时,y的值随x值的增大而增大
    【分析】设出二次函数的解析式,根据表中数据求出函数解析式即可判断.
    【解答】解:设二次函数的解析式为y=ax2+bx+c,
    由题知6=a×(−2)2+b×(−2)+c−4=c−6=a+b+c,
    解得a=1b=−3c=−4,
    ∴二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x−32)2−254,
    A.函数图象开口向上,故A选项不符合题意;
    B.与x轴的交点为(4,0)和(﹣1,0),故B选项不符合题意;
    C.当x=32时,函数有最小值为−254,故C选项符合题意;
    D.函数对称轴为直线x=32,根据图象可知当x>32时,y的值随x值的增大而增大,故D选项不符合题意.
    故选:C.
    【点评】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.
    17.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是( )
    A.1B.2C.3D.4
    【分析】不妨假设a>0,利用图象法一一判断即可.
    【解答】解:方法一:不妨假设a>0.
    ①如图1中,P1,P2满足x1>x2+2,
    ∵P1P2∥AB,
    ∴S1=S2,故①错误.
    ②当x1=﹣2,x2=﹣1,满足x1<2﹣x2,
    则S1>S2,故②错误,
    ③∵|x1﹣2|>|x2﹣2|>1,
    ∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,
    ∴S1>S2,故③正确,
    ④如图2中,P1,P2满足|x1﹣2|>|x2+2|>1,但是S1=S2,故④错误.
    故选:A.
    方法二:解:∵抛物线y=ax2+bx+c与x轴的交点为A(1,0)和B(3,0),
    ∴该抛物线对称轴为x=2,
    当x1>x2+2时与当x1<2﹣x2时无法确定P1(x1,y1),P2(x2,y2)在抛物线上的对应位置,
    故①和②都不正确;
    当|x1﹣2|>|x2﹣2|>1时,P1(x1,y1)比P2(x2,y2)离对称轴更远,且同在x轴上方或者下方,
    ∴|y1|>|y2|,
    ∴S1>S2,故③正确;
    当|x1﹣2|>|x2+2|>1时,即在x轴上x1到2的距离比x2到﹣2的距离大,且都大于1,
    可知在x轴上x1到2的距离大于1,x2到﹣2的距离大于1,但x2到2的距离不能确定,
    所以无法比较P1(x1,y1)比P2(x2,y2)谁离对称轴更远,故无法比较面积,故④错误;
    故选:A.
    【点评】本题考查抛物线与x轴的交点,二次函数图象上的点的特征等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.
    18.(2021•巴中)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
    A.①④B.②③C.③④D.②④
    【分析】由表格可以得到二次函数图象经过点点(﹣3,1.875)和点(1,1.875),这两点关于对称轴对称,由此得到对称轴直线,设出二次函数顶点式,代入两点,求解出二次函数解析式,得到a,b,c的值,依次代入到①②③④中进行判断即可解决.
    【解答】解:由表格可以得到,二次函数图象经过点(﹣3,1.875)和点(1,1.875),
    ∵点(﹣3,1.875)与点(1,1.875)是关于二次函数对称轴对称的,
    ∴二次函数的对称轴为直线x=−3+12=−1,
    ∴设二次函数解析式为y=a(x+1)2+h,
    代入点(﹣2,3),(2,0)得,
    a+ℎ=39a+ℎ=0,
    解得a=−38ℎ=278,
    ∴二次函数的解析式为:y=−38(x+1)2+278,
    ∵y=−38x2−34x+3,
    ∴c=3,
    ∴①是错误的,
    ∵b2﹣4ac=916+4×38×3>0,
    ∴②是正确的,
    方程ax2+bx=0为−38x2−34x=0,
    即为x2+2x=0,
    ∴x1=﹣2,x2=0,
    ∴③是正确的,
    ∵7a+c=7×(−38)+3=38>0,
    ∴④是错误的,
    ∴②③是正确的,
    故选:B.
    【点评】本题考查了二次函数系数特征和二次函数解析式求法,利用待定系数法求解函数解析式是通法,由表格提炼出对称轴的信息,是解题的突破口,此题,也可以通过二次函数系数特征来解决.
    19.(2021•淄博)已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足S△ABP1=S△ABP2=S△ABP3=m,则m的值是( )
    A.1B.32C.2D.4
    【分析】由已知条件可判定三点中必有一点在二次函数y=2x2﹣8x+6的顶点上,通过求解二次函数的顶点的坐标及与x轴的交点坐标利用三角形的面积公式可求解m值.
    【解答】解:∵二次函数y=2x2﹣8x+6的图象上有且只有P1,P2,P3三点满足S△ABP1=S△ABP2=S△ABP3=m,
    ∴三点中必有一点在二次函数y=2x2﹣8x+6的顶点上,
    ∵y=2x2﹣8x+6=2(x﹣2)2﹣2=2(x﹣1)(x﹣3),
    ∴二次函数y=2x2﹣8x+6的图象的顶点坐标为(2,﹣2),
    令y=0,则2(x﹣1)(x﹣3)=0,
    解得x=1或x=3,
    ∴与x轴的交点为(1,0),(3,0),
    ∴AB=3﹣1=2,
    ∴m=12×2×2=2.
    故选:C.
    【点评】本题主要考查二次函数的图象与性质,二次函数与x轴的交点,二次函数图象上点的坐标的特征,判定P1,P2,P3点的位置是解题的关键.
    20.(2021•无锡)对于二次函数y=x2﹣2mx﹣3,有下列说法:
    ①它的图象与x轴有两个公共点;
    ②当x≤2时,y随x的增大而减小,则m=2;
    ③若将它的图象向右平移3个单位后过原点,则m=1;
    ④当x=3时函数值与x=2017时函数值相同,则当x=2021时的函数值为2018.
    其中,说法正确的是( )
    A.①②B.①③C.①④D.②④
    【分析】①由根的判别式Δ=4m2+12>0,可得出二次函数y=x2﹣2mx﹣3的图象与x轴有两个公共点,说法①正确;
    ②由当x≤2时,y随x的增大而减小,可得出二次函数图象的对称轴大于等于2,由此可得出m≥2,说法②错误;
    ③得到y=x2﹣2mx﹣3的图象向右平移3个单位后的解析式,令常数项=0,求出m=﹣1即可判断;说法③错误;
    ④根据坐标的对称性,求出m的值,得到函数解析式,将m=1010代入解析式即可.说法④正确.综上即可得出结论.
    【解答】解:①∵△=(﹣2m)2﹣4×1×(﹣3)=4m2+12>0,
    ∴二次函数y=x2﹣2mx﹣3的图象与x轴有两个公共点,说法①正确;
    ②∵当x≤2时,y随x的增大而减小,
    ∴−−2m2=m≥2,说法②错误;
    ③∵y=x2﹣2mx﹣3的图象向右平移3个单位后过原点,∴y=(x﹣3)2﹣2m(x﹣3)﹣3=x2﹣(6+2m)x+6m+9﹣3中6m+9﹣3=0,
    解得m=﹣1,说法③错误;
    ④∵当x=3时的函数值与x=2017时的函数值相等,
    ∴二次函数y=x2﹣2mx﹣3的图象的对称轴为直线x=1010.
    则−−2m2=1010,m=1010,原函数可化为y=x2﹣2020x﹣3,
    当x=2021时,y=20212﹣2020×2021﹣3=2018,说法④正确.
    综上所述:正确的说法有①④.
    故选:C.
    【点评】本题考查了二次函数的性质以及抛物线与x轴的交点,利用二次函数的性质逐一分析四个说法的正误是解题的关键.
    21.(2021•湖北)若抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为直线x=2,P为这条抛物线的顶点,则点P关于x轴的对称点的坐标是( )
    A.(2,4)B.(﹣2,4)C.(﹣2,﹣4)D.(2,﹣4)
    【分析】根据抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为直线x=2,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.
    【解答】解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),
    ∵抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为直线x=2,
    ∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16,−b2×1=2,
    ∴(−b1)2﹣4×c1=16,b=﹣4,
    解得c=0,
    ∴抛物线的解析式为y=x2﹣4x=(x﹣2)2﹣4,
    ∴顶点P的坐标为(2,﹣4),
    ∴点P关于x轴的对称点的坐标是(2,4),
    故选:A.
    【点评】本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.
    22.(2021•呼和浩特)已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0),且过A(0,b),B(3,a)两点(b,a是实数),若0<m<n<2,则ab的取值范围是( )
    A.0<ab<418B.0<ab<198C.0<ab<8116D.0<ab<4916
    【分析】方法1、由二次项系数为1的抛物线判断出抛物线的开口向上,开口大小一定,进而判断出ab>0,再根据完全平方公式判断出a=b,且抛物线与x轴只有一个交点时,是ab的最大值的分界点,进而求出m=n=32,进而求出a=b=94,即可得出结论.
    方法2、先表示出b=mn,a=(3﹣m)(3﹣n),进而得出ab=[﹣(m−32)2+94][﹣(n−32)2+94],再判断出0<﹣(m−32)2+94≤94,0<﹣(n−32)2+94≤94,即可得出结论.
    【解答】解法1、∵函数是一个二次项系数为1的二次函数,
    ∴此函数的开口向上,开口大小一定,
    ∵抛物线与x轴交于两点(m,0),(n,0),且0<m<n<2,
    ∴a>0,b>0,
    ∴ab>0,
    ∵(a﹣b)2=a2+b2﹣2ab≥0(a=b时取等号),
    即a2+b2≥2ab(当a=b时取等号),
    ∴当a=b时,ab才有可能最大,
    ∵二次函数过A(0,b),B(3,a)两点,
    ∴当a=b时,点A,B才关于抛物线的对称轴对称,即抛物线的对称轴为直线x=1.5,
    ∵抛物线与x轴交于两点(m,0),(n,0),且0<m<n<2,
    ∴抛物线的顶点越接近x轴,ab的值越大,
    即当抛物线与x轴只有一个交点时,是ab最大值的分界点,
    当抛物线与x轴只有一个交点时,此时m=n=32,
    ∴抛物线的解析式为y=(x−32)2=x2﹣3x+94,
    ∴a=b=94,
    ∴ab<(94)2=8116,
    ∴0<ab<8116,
    故选:C.
    解法2、由已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0),
    所以可设交点式y=(x﹣m)(x﹣n),
    分别代入(0,b),(3,a),
    ∴ab=mn(3﹣m)(3﹣n)=(3m﹣m2)(3n﹣n2)=[﹣(m−32)2+94][﹣(n−32)2+94]
    ∵0<m<n<2,
    ∴0<﹣(m−32)2+94≤94,0<﹣(n−32)2+94≤94,
    ∵m<n,
    ∴ab不能取8116,
    ∴0<ab<8116,
    故选:C.
    【点评】此题主要考查了二次函数的性质,完全平方的非负性,判断出a=b以及抛物线与x轴只有一个交点时,ab最大这个分界点是解本题的关键.
    23.(2021•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
    ①abc>0;
    ②b2<4ac;
    ③2c<3b;
    ④a+b>m(am+b)(m≠1);
    ⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.
    其中正确的结论有( )
    A.2个B.3个C.4个D.5个
    【分析】由二次函数图象性质知,开口向下,则a<0.再结合对称轴−b2a>0,得b>0.据二次函数图象与y轴正半轴相交得c>0.由于二次函数图象与x轴交于不同两点,则b2﹣4ac>0.
    【解答】解:①二次函数图象性质知,开口向下,则a<0.再结合对称轴−b2a>0,得b>0.据二次函数图象与y轴正半轴相交得c>0.
    ∴abc<0.
    ①错.
    ②二次函数图象与x轴交于不同两点,则b2﹣4ac>0.
    ∴b2>4ac.
    ②错.
    ③∵−b2a=1,
    ∴b=﹣2a.
    又当x=﹣1时,y<0.
    即a﹣b+c<0.
    ∴2a﹣2b+2c<0.
    ∴﹣3b+2c<0.
    2c<3b.
    ∴③正确.
    ④∵x=1时函数有最大值,
    ∴当x=1时的y值大于当x=m(m≠1)时的y值,
    即a+b+c>m(am+b)+c
    ∴a+b>m(am+b)(m≠1)成立,
    ∴④正确.
    ⑤将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可.
    由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.故⑤错.
    综上:③④正确,故选:A.
    【点评】本题考查二次函数图象性质,较为综合.需要对二次函数各项系数对图象的决定作用理解透彻,同时需要理解二次函数与方程的关系.会用数形结合的思想去解题.
    24.(2023•日照)在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0),满足3a+b>0a+b<0,已知点(﹣3,m),(2,n),(4,t)在该抛物线上,则m,n,t的大小关系为( )
    A.t<n<mB.m<t<nC.n<t<mD.n<m<t
    【分析】根据已知可得a>0,所以抛物线开口向上,再根据﹣3a<b<﹣a,得12<−b2a<32,再由点(﹣3,m),(2,n),(4,t)在该抛物线上,即可得m,n,t的大小关系.
    【解答】解:∵3a+b>0,
    ∴2a+a+b>0,
    ∵a+b<0,
    ∴2a>0,
    ∴a>0,
    ∴抛物线开口向上,
    ∵﹣3a<b<﹣a,
    ∴12<−b2a<32,
    ∵点(﹣3,m),(2,n),(4,t)在该抛物线上,
    ∴m,n,t的大小关系为:n<t<m.
    故选:C.
    【点评】本题考查的是二次函数图象与系数的关系,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.
    25.(2023•通辽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(x1,0),(2,0),其中0<x1<1 下列四个结论:①abc<0;②a+b+c>0;③2b+3c<0;④不等式ax2+bx+c<−c2x+c的解集为0<x<2.其中正确结论的个数是( )
    A.1B.2C.3D.4
    【分析】利用二次函数的图象和性质依次判断即可.
    【解答】解:∵抛物线开口向上,对称轴在y轴右边,与y轴交于正半轴,
    ∴a>0,b<0,c>0,
    ∴abc<0,
    ∴①正确.
    ∵当x=1时,y<0,
    ∴a+b+c<0,
    ∴②错误.
    ∵抛物线过点(2,0),
    ∴4a+2b+c=0,
    ∴b=﹣2a−c2,a=−12a−14c,
    ∵a+b+c<0,
    ∴a﹣2a−c2+c<0,
    ∴2a﹣c>0,
    ∴﹣a−12c﹣c>0,
    ∴﹣2a﹣3c<0,
    ∴2a+3c>0,
    ∴③错误.
    如图:
    设y1=ax2+bx+c,y2=−c2x+c,
    由图值,y1>y2时,x<0或x>x1,
    故④正确.
    故选:B.
    【点评】本题考查二次函数的图象和性质,掌握二次函数的图象和性质是求解本题的关键.
    26.(2023•湖北)抛物线y=ax2+bx+c(a<0)与x轴相交于点A(﹣3,0),B(1,0).下列结论:①abc<0;②b2﹣4ac>0;③3b+2c=0;④若点P(m﹣2,y1),Q(m,y2)在抛物线上,且y1<y2,则m≤﹣1.其中正确的结论有( )
    A.1个B.2个C.3个D.4个
    【分析】根据二次函数的性质及数形结合思想进行判定.
    【解答】解:①由题意得:y=ax2+bx+c=a(x+3)(x﹣1)=ax2+2ax﹣3a,
    ∴b=2a,c=﹣3a,
    ∵a<0,
    ∴b<0,c>0,
    ∴abc>0,
    故①是错误的;
    ②∵抛物线y=ax2+bx+c(a<0)与x轴相交于点A(﹣3,0),B(1,0).
    ∴ax2+bx+c=0有两个不相等的实数根,
    ∴b2﹣4ac>0,
    故②是正确的;
    ③∵b=2a,c=﹣3a,
    ∴3b+2c=6a﹣6a=0,
    故③是正确的;
    ④∵抛物线y=ax2+bx+c(a<0)与x轴相交于点A(﹣3,0),B(1,0).
    ∴抛物线的对称轴为:x=﹣1,
    当点P(m﹣2,y1),Q(m,y2)在抛物线上,且y1<y2,
    ∴m≤﹣1或m−2<−1<m−1−(m−2)>m−(−1),
    解得:m<0,
    故④是错误的,
    故选:B.
    【点评】本题考查了二次函数与系数的关系,掌握二次函数的性质及数形结合思想是解题的关键.
    27.(2023•东营)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=﹣1.若点A的坐标为(﹣4,0),则下列结论正确的是( )
    A.2a+b=0
    B.﹣4a﹣2b+c>0
    C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根
    D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>﹣1时,y1<y2<0
    【分析】根据对称轴判断①,根据图象特征判断②,根据对称轴及抛物线与x轴的交点判断③,根据抛物线的性质判断④.
    【解答】解:∵对称轴为直线x=﹣1,
    ∴x=−b2a=−1,
    ∴b=2a,
    ∴2a﹣b=0,故①错误,
    ∵抛物线开口向上,
    ∴a>0,
    ∵对称轴在y轴左侧,
    ∴b>0,
    ∵抛物线与y轴交于负半轴,
    ∴c<0,
    ∴﹣4a﹣(2b﹣c)<0,
    即﹣4a﹣2b+c<0,故②错误,
    ∵抛物线与x轴交于(﹣4,0),对称轴为直线x=﹣1,
    ∴抛物线与x轴的另一个交点为(2,0),
    ∴x=2是关于x的一元一次方程ax2+bx+c=0(a≠0)的一个根,故③正确,
    ∵抛物线开口向上,对称轴为直线x=﹣1,
    ∴当x>﹣1时,y随x的增大而增大,
    ∴当x1>x2>﹣1时,y1>y2,故④错误,
    故选:C.
    【点评】本题主要考查的是二次函数图象与系数的关系、二次函数图象上点的特征、抛物线与x轴的焦点情况,熟练掌握个知识点是解决本题的关键.
    28.(2023•齐齐哈尔)如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(3,0),对称轴为直线x=1,结合图象给出下列结论:
    ①abc>0;
    ②b=2a;
    ③3a+c=0;
    ④关于x的一元二次方程ax2+bx+c+k2=0(a≠0)有两个不相等的实数根;
    ⑤若点(m,y1)(﹣m+2,y2)均在该二次函数图象上,则y1=y2.
    其中正确结论的个数是( )
    A.4B.3C.2D.1
    【分析】根据图象特征可判断①,根据对称轴可判断②,根据抛物线与x轴的交点即对称轴确定抛物线与x轴的另一个交点后可判断③,将方程ax2+bx+c+k2=0(a≠0)的解看做y=ax2+bx+c(a≠0)与y=﹣k2的交点可判断④,由点(m,y1)(﹣m+2,y2)关于直线x=1对称可判断⑤.
    【解答】解:∵抛物线开口向上,
    ∴a>0,
    ∵对称轴在y轴右侧,
    ∴b<0,
    ∵抛物线与y轴交于负半轴,
    ∴c<0,
    ∴abc>0,故①正确,
    ∵x=−b2a=1,
    ∴b=﹣2a,故②错误,
    ∵抛物线与x轴的一个交点为(3,0),对称轴为x=1,
    ∴抛物线与x轴的另一个交点为(﹣1,0),
    ∴a﹣b+c=0,
    ∵b=﹣2a,
    ∴3a+c=0,故③正确,
    方程ax2+bx+c+k2=0(a≠0)的解可看做y=ax2+bx+c(a≠0)与y=﹣k2的交点,
    ∵﹣k2≤0,
    ∴当y=﹣k2过抛物线y=ax2+bx+c(a≠0)顶点时,两函数只有一个交点,即方程ax2+bx+c+k2=0有两个相等的实数根,故④错误,
    ∵点(m,y1)(﹣m+2,y2)关于直线x=1对称,
    ∴y1=y2,故⑤正确.
    故选:B.
    【点评】本题主要考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、根的判别式以及抛物线与x轴的交点,熟练掌握各知识点是解决本题的关键.
    29.(2023•聊城)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象经过点(0,2),其对称轴为直线x=﹣1.下列结论:①3a+c>0;②若点(﹣4,y1),(3,y2)均在二次函数图象上,则y1>y2;③关于x的一元二次方程ax2+bx+c=﹣1有两个相等的实数根;④满足ax2+bx+c>2的x的取值范围为﹣2<x<0.其中正确结论的个数为( )
    A.1个B.2个C.3个D.4个
    【分析】由对称轴为直线x=﹣1可得b=2a,再将x=1代入可判断①,找出(﹣4,y1)关于直线x=﹣1对称的点,再根据二次函数的性质可判断②,方程ax2+bx+c=﹣1的解可看做抛物线y=ax2+bx+c与直线y=﹣1的交点,找出交点个数可判断③,不等式ax2+bx+c>2的解集可看做抛物线y=ax2+bx+c的图象在直线y=2上方的部分,可判断④.
    【解答】解:∵对称轴为直线x=﹣1.
    ∴b=2a,
    ∵当x=1时,y=a+b+c<0,
    ∴3a+c<0,故①错误,
    ∵抛物线开口向下,
    ∴在对称轴的右侧y随x的增大而减小,
    ∵(﹣4,y1)关于直线x=﹣1对称的点为(2,y1),
    又∵2<3,
    ∴y1>y2,故②正确,
    方程ax2+bx+c=﹣1的解可看做抛物线y=ax2+bx+c与直线y=﹣1的交点,
    由图象可知抛物线y=ax2+bx+c与直线y=﹣1有两个交点,
    ∴关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根,故③错误,
    不等式ax2+bx+c>2的解集可看做抛物线y=ax2+bx+c的图象在直线y=2上方的部分,
    ∵(0,2)关于直线x=﹣1对称的点为(﹣2,2),
    ∴x的取值范围为﹣2<x<0,故④正确.
    故选:B.
    【点评】本题主要考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x轴的交点等,熟练掌握二次函数的相关知识是解决本题的关键.
    30.(2023•邵阳)已知P1(x1,y1)P2(x2,y2)是抛物线y=ax2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=﹣2;②点(0,3)在抛物线上;③若x1>x2>﹣2,则y1>y2;④若y1=y2,则x1+x2=﹣2,其中,正确结论的个数为( )
    A.1个B.2个C.3个D.4个
    【分析】根据题目中的二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【解答】解:∵抛物线y=ax2+4ax+3的对称轴为直线x=−4a2a=−2,
    ∴①正确;
    当x=0时,y=3,则点点(0,3)在抛物线上,
    ∴②正确;
    当a>0时,x1>x2>﹣2,则y1>y2;
    当a<0时,x1>x2>﹣2,则y1<y2;
    ∴③错误;
    当y1=y2,则x1+x2=﹣4,
    ∴④错误;
    故正确的有2个,
    故选:B.
    【点评】本题考查二次函数的性质,二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
    二.填空题(共22小题)
    31.(2023•赤峰)如图,抛物线y=x2﹣6x+5与x轴交于点A,B,与y轴交于点C,点D(2,m)在抛物线上,点E在直线BC上,若∠DEB=2∠DCB,则点E的坐标是 (175,85) 和 (335,−85) .
    【分析】先根据题意画出图形,先求出D点坐标,当E点在线段BC上时:∠DEB 是△DCE 的外角,∠DEB=2∠DCB,而∠DEB=∠DCE+∠CDE,所以此时∠DCE=∠CDE,有 CE=DE,可求出BC 所在直线的解析式y=﹣x+5,设E点(a,﹣a+5)坐标,再根据两点距离公式,CE=DE,得到关于a的 方程,求解a的值,即可求出E点坐标;当E点在线段CB的延长线上时,根据题中条件,可以证明 BC2+BD2=DC2 得到∠DBC为直角三角形,延长EB至E′,取BE′=BE,此时,∠DE'E=∠DEE'=2∠DCB,从而证明E′是要找的点,应为 OC=OB,△OCB 为等腰直角三角形,点 E和E′关于B点对称,可以根据E点坐标求出E′点坐标.
    【解答】解:根据D点坐标,有m=22﹣6×2+5=﹣3,所,以D点坐标(2,﹣3),
    设BC所在直线解析式为 y=kx+b,其过点C(0,5)、B(5,0),
    b=55k+b=0,
    解得k=−1b=5,
    BC所在直线的解析式为:y=﹣x+5,
    当E点在线段BC上时,设E(a,﹣a+5),∠DEB=∠DCE+∠CDE,而∠DEB=2∠DCB,
    ∴∠DCE=∠CDE,
    ∴CE=DE,
    因为E(a,﹣a+5),C(0,5),D(2,﹣3),
    有a2+(−a+5−5)2=(a−2)2+[−a+5−(−3)]2,
    解得:a=175,−a+5=85,所以E点的坐标为:(175,85),
    当E在CB的延长线上时,
    在△BDC中,BD2=(5﹣2)2+32=18,
    BC2=52+52=50,DC2=(5+3)2+22=68,
    BD2+BC2=DC2,
    ∴BD⊥BC 如图延长EB至 E',取 BE'=BE,
    则有△DEE'为等腰三角形,DE=DE',
    ∴∠DEE′=∠DE′E,
    又∵∠DEB=2∠DCB,
    ∴∠DE′E=2∠DCB,
    则E′为符合题意的点,
    ∵OC=OB=5∠OBC=45°,
    E′的横坐标:5+(5−175)=335,纵坐标为 −85;
    综上E点的坐标为:(175,85) 和 (335,−85).
    【点评】本题考查了二次函数与一次函数综合应用,熟练掌握一次函数根二次函数的图象和性质,分情况 找到E点的位置,是求解此题的关键.
    32.(2023•郴州)已知抛物线y=x2﹣6x+m与x轴有且只有一个交点,则m= 9 .
    【分析】利用判别式Δ=b2﹣4ac=0即可得出结论.
    【解答】解:∵抛物线y=x2﹣6x+m与x轴有且只有一个交点,
    ∴方程x2﹣6x+m=0有唯一解.
    即Δ=b2﹣4ac=36﹣4m=0,
    解得:m=9.
    故答案为:9.
    【点评】本题考查了抛物线与x轴的交点知识,明确Δ=b2﹣4ac决定抛物线与x轴的交点个数是解题的关键.
    33.(2023•巴中)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数y=x+3与y=﹣x+3互为“Y函数”.若函数y=k4x2+(k﹣1)x+k﹣3的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 (3,0)或(4,0) .
    【分析】根据关于y轴对称的图形的对称点的坐标特点,分情况讨论求出它的“Y函数”图象与x轴的交点坐标.
    【解答】解:当k=0时,函数解析式为y=﹣x﹣3,
    它的“Y函数”解析式为y=x﹣3,它们的图象与x轴都只有一个交点,
    ∴它的“Y函数”图象与x轴的交点坐标为(3,0);
    当k≠0时,此函数为二次函数,
    若二次函数y=k4x2+(k−1)x+k−3的图象与x轴只有一个交点,
    则二次函数的顶点在x轴上,
    即4×k4(k−3)−(k−1)24×k4=0,
    解得k=﹣1,
    ∴二次函数的解析式为y=−14x2−2x−4=−14(x+4)2,
    ∴它的“Y函数”解析式为y=−14(x−4)2,
    令y=0,
    则−14(x−4)2=0,
    解得x=4,
    ∴二次函数的“Y函数”图象与x轴的交点坐标为(4,0),
    综上,它的“Y函数”图象与x轴的交点坐标为(3,0)或(4,0).
    故答案为:(3,0)或(4,0).
    【点评】本题考查了新定义,二次函数与x轴的交点坐标,坐标与图形变换﹣﹣﹣﹣轴对称,求一次函数解析式和二次函数解析式,理解题意,采用分类讨论的思想是解题的关键.
    34.(2023•宜宾)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),顶点为M(﹣1,m),且抛物线与y轴的交点B在(0,﹣2)与(0,﹣3)之间(不含端点),则下列结论:①当﹣3≤x≤1时,y≤0;②当△ABM的面积为332时,a=32;③当△ABM为直角三角形时,在△AOB内存在唯一一点P,使得PA+PO+PB的值最小,最小值的平方为18+93.其中正确的结论是 ①② .(填写所有正确结论的序号)
    【分析】①根据抛物线的对称性可得:抛物线与x轴的另一个交点坐标为(1,0),再结合抛物线的性质可判断结论①;
    ②将(﹣3,0),(1,0)代入y=ax2+bx+c,可得b=2a,c=﹣3a,得出y=ax2+2ax﹣3a=a(x+1)2﹣4a,抛物线的顶点为M(﹣1,﹣4a),设抛物线对称轴交x轴于H,利用S△ABM=S△AMH+S梯形BMHO﹣S△AOB,建立方程求解即可判断②;
    ③根据△ABM为直角三角形,利用勾股定理求得a=22,将△BPA绕点B逆时针旋转60°得到△BP′A′,连接PP′,过点A′作A′T⊥x轴于点T,作A′Q⊥y轴于点Q,可得△BPP′和△ABA′是等边三角形,即AA′=A′B=AB=272,由于PA+PO+PB=P′A′+PO+PP′,可得当点O,点P,点P′,点A′共线时,PA+PO+PB值最小,最小值为OA′,设A′(m,n),列方程组(−3−m)2+(−n)2=272(−322−n)2+(−m)2=272,求解即可求得m、n,再利用OA′2=m2+n2,即可判断③.
    【解答】解:①∵抛物线y=ax2+bx+c经过点A(﹣3,0),顶点为M(﹣1,m),
    ∴抛物线的对称轴为直线x=﹣1,
    ∴抛物线与x轴的另一个交点坐标为(1,0),
    ∵抛物线的开口向上,
    ∴当﹣3≤x≤1时,y≤0;故①正确.
    ②将(﹣3,0),(1,0)代入y=ax2+bx+c,得9a−3b+c=0a+b+c=0,
    解得:b=2ac=−3a,
    ∴y=ax2+2ax﹣3a=a(x+1)2﹣4a,
    ∴抛物线的顶点为M(﹣1,﹣4a),
    设抛物线对称轴交x轴于H,如图,
    则H(﹣1,0),
    ∴AH=﹣1﹣(﹣3)=2,MH=4a,OH=1,
    ∵B(0,﹣3a),
    ∴OB=3a,
    ∴S△ABM=S△AMH+S梯形BMHO﹣S△AOB=12•AH•MH+12•(MH+OB)•OH−12OA•OB=12×2×4a+12×(4a+3a)×1−12×3×3a=3a,
    ∵S△ABM=332,
    ∴3a=332,
    ∴a=32;故②正确.
    ③∵A(﹣3,0),B(0,﹣3a),M(﹣1,﹣4a),
    ∴AB2=OA2+OB2=32+(3a)2=9+9a2,AM2=AH2+MH2=4+16a2,BM2=1+a2,
    若∠AMB=90°,则AM2+BM2=AB2,
    即4+16a2+1+a2=9+9a2,
    解得:a=22,或a=−22(舍去);
    若∠ABM=90°,则AB2+BM2=AM2,
    即9+9a2+1+a2=4+16a2,
    解得:a=1,或a=﹣1(舍去);
    若∠BAM=90°,则AB2+AM2=BM2,
    即9+9a2+4+16a2=1+a2,
    整理得:a2=−12(无解);
    ∵点B在(0,﹣2)与(0,﹣3)之间(不含端点),
    ∴﹣3<﹣3a<﹣2,
    ∴23<a<1,
    ∴a=22,
    ∴OB=322,AB2=272,
    如图,将△BPA绕点B逆时针旋转60°得到△BP′A′,连接PP′,过点A′作A′T⊥x轴于点T,作A′Q⊥y轴于点Q,
    ∴BP=BP′,PA=P′A′,∠PBP′=∠ABA′=60°,
    ∴△BPP′和△ABA′是等边三角形,
    ∴BP=PP′,AA′=A′B=AB=272,
    ∴PA+PO+PB=P′A′+PO+PP′,
    ∴当点O,点P,点P′,点A′共线时,PA+PO+PB值最小,最小值为OA′,
    此时∠APB=∠APO=∠BPO=120°,
    设A′(m,n),
    则A′T=﹣n,AT=﹣3﹣m,A′Q=﹣m,BQ=﹣n−322,
    在Rt△AA′T中,AT2+A′T2=AA′2,
    在Rt△BA′Q中,BQ2+A′Q2=A′B2,
    即(−3−m)2+(−n)2=272(−322−n)2+(−m)2=272,
    解得:m=−6−364n=−32−634,
    ∴OA′2=m2+n2=(−6−364)2+(−32−634)2=27+962,
    故③错误;
    故答案为:①②.
    【点评】本题考查了二次函数的图象和性质,待定系数法,三角形面积,勾股定理,旋转变换的应用,等边三角形的判定和性质等,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.
    35.(2022•大庆)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为 1或−45 .
    【分析】函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,分情况讨论,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,得出Δ=0,m≠0.
    【解答】解:当m=0时,y=﹣1,与坐标轴只有一个交点,不符合题意.
    当m≠0时,∵函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,
    ①过坐标原点,m﹣1=0,m=1,
    ②与x、y轴各一个交点,
    ∴Δ=0,m≠0,
    (3m)2﹣4m(m﹣1)=0,
    解得m=0(舍去)或m=−45,
    综上所述:m的值为1或−45.
    【点评】本题考查抛物线与x轴的交点、二次函数的性质,掌握函数的图象与坐标轴恰有两个公共点的情况,看清题意,分情况讨论是解题关键.
    36.(2022•无锡)把二次函数y=x2+4x+m的图象向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件: m>3 .
    【分析】先求出平移后的抛物线的解析式,由平移后所得抛物线与坐标轴有且只有一个公共点,可得Δ<0,即可求解.
    【解答】解:∵把二次函数y=x2+4x+m=(x+2)2+m﹣4的图象向上平移1个单位长度,再向右平移3个单位长度,
    ∴平移后的解析式为:y=(x+2﹣3)2+m﹣4+1,
    ∴平移后的解析式为:y=x2﹣2x+m﹣2,
    ∴对称轴为直线x=1,
    ∵平移后所得抛物线与坐标轴有且只有一个公共点,
    ∴Δ=4﹣4(m﹣2)<0,
    ∴m>3,
    故答案为:m>3.
    【点评】本题考查二次函数图象与几何变换以及二次函数的性质,关键是掌握二次函数的几何变换.
    37.(2022•福建)已知抛物线y=x2+2x﹣n与x轴交于A,B两点,抛物线y=x2﹣2x﹣n与x轴交于C,D两点,其中n>0.若AD=2BC,则n的值为 8 .
    【分析】方法1、先判断出了抛物线与x轴的两交点坐标,进而求出AD,BC,进而建立方程,求解即可求出答案.
    方法2、先判断出抛物线y=x2﹣2x﹣n的图象可由y=x2+2x﹣n的图象向右平移两个单位得到,进而画出图象,再借助AD=2BC,求出点C的坐标,即可求出答案.
    【解答】方法1、解:针对于抛物线y=x2+2x﹣n,
    令y=0,则x2+2x﹣n=0,
    ∴x=﹣1±n+1,
    针对于抛物线y=x2﹣2x﹣n,
    令y=0,则x2﹣2x﹣n=0,
    ∴x=1±n+1,
    ∵抛物线y=x2+2x﹣n=(x+1)2﹣n﹣1,
    ∴抛物线y=x2+2x﹣n的顶点坐标为(﹣1,﹣n﹣1),
    ∵抛物线y=x2﹣2x﹣n=(x﹣1)2﹣n﹣1,
    ∴抛物线y=x2﹣2x﹣n的顶点坐标为(1,﹣n﹣1),
    ∴抛物线y=x2+2x﹣n与抛物线y=x2﹣2x﹣n的开口大小一样,与y轴相交于同一点,顶点到x轴的距离相等,
    ∴AB=CD,
    ∵AD=2BC,
    ∴抛物线y=x2+2x﹣n与x轴的交点A在左侧,B在右侧,抛物线y=x2﹣2x﹣n与x轴的交点C在左侧,D在右侧,
    ∴A(﹣1−n+1,0),B(﹣1+n+1,0),C(1−n+1,0),D(1+n+1,0),
    ∴AD=1+n+1−(﹣1−n+1)=2+2n+1,BC=﹣1+n+1−(1−n+1)=﹣2+2n+1,
    ∴2+2n+1=2(﹣2+2n+1),
    ∴n=8,
    故答案为:8.
    方法2、∵y=x2+2x﹣n=(x+1)2﹣n﹣1,
    ∴抛物线y=x2+2x﹣n的对称轴为直线x=﹣1,顶点坐标为(﹣1,﹣n﹣1),
    ∵y=x2﹣2x﹣n=(x﹣1)2﹣n﹣1,
    ∴抛物线y=x2﹣2x﹣n的对称轴为直线x=1,顶点坐标为(1,﹣n﹣1),
    ∴抛物线y=x2﹣2x﹣n的图象可由y=x2+2x﹣n的图象向右平移两个单位得到,
    ∵n>0,
    ∴﹣n﹣1<﹣1,
    两函数的图象如图所示:
    由平移得,AC=BD=2,
    ∵AB=CD,AD=2BC,
    ∴BC=2AC=4,
    ∴CD=BC+BD=6,
    ∵点C,D关于直线x=1对称,
    ∴C(﹣2,0),
    ∵点C在抛物线 y=x2﹣2x﹣n 上,
    ∴4+4﹣n=0,
    ∴n=8,
    故答案为:8.
    【点评】此题主要考查了抛物线的性质,抛物线与x轴交点的求法,表示出点A,B,C,D的坐标是解本题的关键.
    38.(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 ①②③ .(填序号,多选、少选、错选都不得分)
    【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.
    【解答】解:∵抛物线对称轴在y轴的左侧,
    ∴ab>0,
    ∵抛物线与y轴交点在x轴上方,
    ∴c>0,①正确;
    ∵抛物线经过(1,0),
    ∴a+b+c=0,②正确.
    ∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,
    ∴另一个交点为(﹣3,0),
    ∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;
    ∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,
    ∴y2>y1>y3,④错误.
    ∵抛物线与x轴的一个交点坐标为(1,0),
    ∴a+b+c=0,
    ∵−b2a=−1,
    ∴b=2a,
    ∴3a+c=0,⑤错误.
    故答案为:①②③.
    【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.
    39.(2022•赤峰)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D(m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 (﹣5,﹣4)或(0,1) .
    【分析】由抛物线解析式可得A,B,C三点的坐标,则AB=4,将点D的坐标代入抛物线的解析式可得m的值,确定D的坐标,根据计算的D的坐标分情况画图可得结论.
    【解答】解:把点D(m,m+1)代入抛物线y=﹣x2﹣6x﹣5中得:
    m+1=﹣m2﹣6m﹣5,
    解得:m1=﹣1,m2=﹣6,
    ∴D(﹣1,0)或(﹣6,﹣5),
    当y=0时,﹣x2﹣6x﹣5=0,
    ∴x=﹣1或﹣5,
    ∴A(﹣5,0),B(﹣1,0),
    当x=0时,y=﹣5,
    ∴OC=OA=5,
    ∴△AOC是等腰直角三角形,
    ∴∠OAC=45°,
    ①如图1,D(﹣1,0),此时点D与B重合,连接AD',
    ∵点D与D'关于直线AC对称,
    ∴AC是BD的垂直平分线,
    ∴AB=AD'=﹣1﹣(﹣5)=4,且∠OAC=∠CAD'=45°,
    ∴∠OAD'=90°,
    ∴D'(﹣5,﹣4);
    ②如图2,D(﹣6,﹣5),
    ∵点D(m,m+1),
    ∴点D在直线y=x+1上,此时直线y=x+1过点B,
    ∴BD⊥AC,即D'在直线y=x+1上,
    ∵A(﹣5,0),C(0,﹣5),
    则直线AC的解析式为:y=﹣x﹣5,
    ∵﹣x﹣5=x+1,
    ∴x=﹣3,
    ∴E(﹣3,﹣2),
    ∵点D与D'关于直线AC对称,
    ∴E是DD'的中点,
    ∴D'(0,1),
    综上,点D关于直线AC的对称点的坐标为(﹣5,﹣4)或(0,1).
    故答案为:(﹣5,﹣4)或(0,1).
    【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、等腰直角三角形的判定与性质、轴对称的性质;熟练掌握二次函数图象上点的坐标特征和轴对称的性质是解决问题的关键.
    40.(2021•成都)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k= 1 .
    【分析】由题意得:Δ=b2﹣4ac=4﹣4k=0,即可求解.
    【解答】解:由题意得:Δ=b2﹣4ac=4﹣4k=0,
    解得k=1,
    故答案为1.
    【点评】本题考查的是抛物线和x轴的交点,Δ=b2﹣4ac>0时,抛物线与x轴有2个交点,Δ=b2﹣4ac=0时,抛物线与x轴有1个交点,Δ=b2﹣4ac<0时,抛物线与x轴没有交点.
    41.(2021•淄博)对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是 b≤−14 .
    【分析】根据题意得到4a2﹣4(a+b)≥0,求得a2﹣a的最小值,即可得到b的取值范围.
    【解答】解:∵对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有交点,
    ∴△≥0,则(2a)2﹣4(a+b)≥0,
    整理得b≤a2﹣a,
    ∵a2﹣a=(a−12)2−14,
    ∴a2﹣a的最小值为−14,
    ∴b≤−14,
    故答案为b≤−14.
    【点评】本题考查了抛物线与x轴的交点,二次函数的最值,根据题意得到b≤a2﹣a是解题的关键.
    42.(2021•包头)已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE的面积为 4 .
    【分析】解方程x2﹣2x﹣3=0得A(﹣1,0),B(3,0),则抛物线的对称轴为直线x=1,再确定C(0,﹣3),D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,利用两点之间线段最短可判断此时BE+DE的值最小,接着利用待定系数法求出直线AD的解析式为y=x+1,则F(0,1),然后根据三角形面积公式计算.
    【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
    抛物线的对称轴为直线x=1,
    当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3),
    当x=4时,y=x2﹣2x﹣3=5,则D(4,5),
    连接AD交直线x=1于E,交y轴于F点,如图,
    ∵BE+DE=EA+DE=AD,
    ∴此时BE+DE的值最小,
    设直线AD的解析式为y=kx+b,
    把A(﹣1,0),D(4,5)代入得−k+b=04k+b=5,解得k=1b=1,
    ∴直线AD的解析式为y=x+1,
    当x=1时,y=x+1=2,则E(1,2),
    当x=0时,y=x+1=1,则F(0,1),
    ∴S△ACE=S△ACF+S△ECF=12×4×1+12×4×1=4.
    故答案为4.
    【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和最短路径问题.
    43.(2021•南充)关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:
    ①当a<0时,抛物线与直线y=2x+2没有交点;
    ②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;
    ③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.
    其中正确结论的序号是 ②③ .
    【分析】①构建方程组,转化为一元二次方程,利用判别式的值判断即可.
    ②首先证明a>1,再证明x=1时,y<0,可得结论.
    ③首先证明a>0,再根据顶点在x轴上或x轴的上方,在点(0,1)的下方,可得不等式组1>4a−44a≥0,由此可得结论.
    【解答】解:由y=2x+2y=ax2−2x+1,消去y得到,ax2﹣4x﹣1=0,
    ∵Δ=16+4a,a<0,
    ∴Δ的值可能大于0,
    ∴抛物线与直线y=2x+2可能有交点,故①错误.
    ∵抛物线与x轴有两个交点,
    ∴Δ=4﹣4a>0,
    ∴a<1,
    ∵抛物线经过(0,1),且x=1时,y=a﹣1<0,
    ∴抛物线与x轴一定有一个交点在(0,0)与(1,0)之间.故②正确,
    ∵抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),
    ∴2≥−−22a>0且−1a+2≥4a−44a≥0,
    解得,a≥1,故③正确,
    故答案为:②③.
    【点评】本题考查抛物线与x轴的交点,一次函数的性质,二次函数的性质等知识,解题的关键是学会构建不等式或不等式组解决问题,属于中考填空题中的压轴题.
    44.(2023•武汉)抛物线y=ax2+bx+c(a,b,c是常数,c<0)经过(1,1),(m,0),(n,0)三点,且n≥3.下列四个结论:
    ①b<0;
    ②4ac﹣b2<4a;
    ③当n=3时,若点(2,t)在该抛物线上,则t>1;
    ④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则0<m≤13.
    其中正确的是 ②③④ (填写序号).
    【分析】①根据图象经过(1,1),c<0,且抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,判断出抛物线的开口向下,即a<0,再把(1,1)代入 y=ax2+bx+c 得a+b+c=1,即可判断①错误;
    ②先得出抛物线的对称轴在直线x=1.5的右侧,得出抛物线的顶点在点(1,1)的右侧,得出4ac−b24a>1,根据4a<0,利用不等式的性质即可得出4ac﹣b2<4a,即可判断②正确;
    ③先得出抛物线对称轴在直线 x=1.5 的右侧,得出(1,1)到对称轴的距离大于(2,t)到对称轴的距离,根据a<0,抛物线开口向下,距离抛物线越近的函数值越大,即可得出③正确;
    ④根据方程有两个相等的实数解,得出Δ=(b﹣1)2﹣4ac=0,把(1,1)代入y=ax2+bx+c 得a+b+c=1,即1﹣b=a+c,求出a=c,根据根与系数的关系得出 mn=ca=1,即 n=1m,根据 n≥3,得出 1m≥3 求出m的取值范围,即可判断④正确.
    【解答】解:①图象经过(1,1),c<0,即抛物线与y轴的负半轴有交点,如果抛物线的开口向上,则抛物线与x轴的交点 都在(1,0)的左侧,
    ∵(n,0)中n≥3,
    ∴抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,
    ∴抛物线的开口一定向下,即a<0,
    把(1,1)代入y=ax2+bx+c 得:a+b+c=1,
    即b=1﹣a﹣c,
    ∵a<0,c<0,
    ∴b>0,
    故①错误;
    ②∵a<0,b>0,c<0,ca>0,
    ∴方程ax2+bx+c=0的两个根的积大于0,
    即mn>0,
    ∵n≥3,
    ∴m>0,
    ∴m+n2>1.5,
    即抛物线的对称轴在直线x=1.5的右侧,
    ∴抛物线的顶点在点(1,1)的右侧,
    ∴4ac−b24a>1,
    ∵4a<0,
    ∴4ac﹣b2<4a,
    故②正确;
    ③∵m>0,
    ∴当 n=3 时,m+n2>1.5,
    ∴抛物线对称轴在直线x=1.5的右侧,
    ∴(1,1)到对称轴的距离大于(2,t)到对称轴的距离,
    ∵a<0,抛物线开口向下,
    ∴距离抛物线越近的函数值越大,
    ∴t>1,
    故③正确;
    ④方程ax2+bx+c=x可变为ax2+(b﹣1)x+c=0,
    ∵方程有两个相等的实数解,
    Δ=(b﹣1)2﹣4ac=0.
    ∵把(1,1)代入 y=ax2+bx+c 得a+b+c=1,即1﹣b=a+c,
    ∴(a+c)2﹣4ac=0,
    即a2+2ac+c2﹣4ac=0,
    ∴(a﹣c)2=0,
    ∴a﹣c=0,
    即a=c,
    ∵(m,0),(n,0)在抛物线上,
    ∴m,n为方程 ax2+bx+c=0 的两个根,
    ∴mn=ca=1,
    ∴n=1m,
    ∵n≥3,
    ∴1m≥3,
    ∴0<m≤13.
    故④正确.
    综上,正确的结论有:②③④.
    故答案为:②③④.
    【点评】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,待定系数法,数形结合法,抛物线与x轴的交点,二次函数与一元二次方程的联系,一元二次方程的根的判别式,熟练掌握二次函数的性质和二次函数与一元二次方程的联系是解题的关键.
    45.(2023•福建)已知抛物线y=ax2﹣2ax+b(a>0)经过A(2n+3,y1),B(n﹣1,y2)两点,若A,B分别位于抛物线对称轴的两侧,且y1<y2,则n的取值范围是 ﹣1<n<0 .
    【分析】由题意可知:抛物线的对称轴为x=1,开口向上,再分点A在对称轴x=1的左侧,点B在对称轴x=1的右侧和点B在对称轴x=1的左侧,点A在对称轴x=1的右侧两种情况求解即可.
    【解答】解:抛物线的对称轴为:x=−b2a=1,
    ∵a>0,
    ∴抛物线开口向上,
    ∵y1<y2,
    ∴若点A在对称轴x=1的左侧,点B在对称轴x=1的右侧,
    由题意可得:2n+3<1n−1>11−(2n+3)<n−1−1,
    不等式组无解;
    若点B在对称轴x=1的左侧,点A在对称轴x=1的右侧,
    由题意可得:2n+3>1n−1<11−(n−1)>2n+3−1,
    解得:﹣1<n<0,
    ∴n的取值范围为:﹣1<n<0.
    故答案为:﹣1<n<0.
    【点评】本题主要考查的是二次函数的性质以及二次函数图象上点的坐标的特征,能根据题意正确列出不等式组是解决本题的关键.
    46.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0≤x≤3)图象的关联矩形恰好也是矩形OABC,则b= 712或−2512 .
    【分析】根据题意求得点A(3,0),B(3,4),C(0,4),然后分两种情况,利用待定系数法求出解析式即可.
    【解答】解:由y=(x﹣2)2(0≤x≤3),当x=0时,y=4,
    ∴C(0,4),
    ∵A(3,0),四边形ABCO是矩形,
    ∴B(3,4),
    ①当抛物线经过O、B时,将点O(0,0),B(3,4)代入y=14x2+bx+c(0≤x≤3)得
    c=014×9+3b+c=4,
    解得b=712;
    ②当抛物线经过A、C时,将点A(3,0),C(0,4)代入y=14x2+bx+c(0≤x≤3)得
    c=414×9+3b+c=0,
    解得b=−2512,
    综上所述,b=712或b=−2512,
    故答案为:712或−2512,
    【点评】本题考查了待定系数法求抛物线的解析式,能够理解新定义,最小矩形的限制条件是解题的关键.
    47.(2022•武汉)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:
    ①b>0;
    ②若m=32,则3a+2c<0;
    ③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;
    ④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.
    其中正确的是 ①③④ (填写序号).
    【分析】①正确.根据对称轴在y轴的右侧,可得结论;
    ②错误.3a+2c=0;
    ③正确.由题意,抛物线的对称轴直线x=h,0<h<0.5,由点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,推出点M到对称轴的距离<点N到对称轴的距离,推出y1>y2;
    ④正确,证明判别式>0即可.
    【解答】解:∵对称轴x=−1+m2>0,
    ∴对称轴在y轴右侧,
    ∴−b2a>0,
    ∵a<0,
    ∴b>0,
    故①正确;
    当m=32时,对称轴x=−b2a=14,
    ∴b=−a2,
    当x=﹣1时,a﹣b+c=0,
    ∴3a2+c=0,
    ∴3a+2c=0,故②错误;
    由题意,抛物线的对称轴直线x=h,0<h<0.5,
    ∵点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,
    ∴点M到对称轴的距离<点N到对称轴的距离,
    ∴y1>y2,故③正确;
    设抛物线的解析式为y=a(x+1)(x﹣m),
    方程a(x+1)(x﹣m)=1,
    整理得,ax2+a(1﹣m)x﹣am﹣1=0,
    Δ=[a(1﹣m)]2﹣4a(﹣am﹣1)
    =a2(m+1)2+4a,
    ∵1<m<2,a≤﹣1,
    ∴Δ>0,
    ∴关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.故④正确,
    故答案为:①③④.
    【点评】本题考查二次函数的性质,一元二次方程的根的判别式等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    48.(2022•贵港)已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=−12.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<14(a﹣2b)(其中m≠−12);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有 3 个.
    【分析】根据抛物线与x轴的一个交点(﹣2,0)以及其对称轴,求出抛物线与x轴的另一个交点(1,0),利用待定系数法求函数解析式,再根据抛物线开口朝下,可得a<0,进而可得b<0,c>0,再结合二次函数的图象和性质逐条判断即可.
    【解答】解:∵抛物线的对称轴为直线x=−12,且抛物线与x轴的一个交点坐标为(﹣2,0),
    ∴抛物线与x轴的另一个交点坐标为(1,0),
    把(﹣2,0)(1,0)代入y=ax2+bx+c(a≠0),可得:
    4a−2b+c=0a+b+c=0,
    解得b=ac=−2a,
    ∴a+b+c=a+a﹣2a=0,故③正确;
    ∵抛物线开口方向向下,
    ∴a<0,
    ∴b=a<0,c=﹣2a>0,
    ∴abc>0,故①错误;
    ∵抛物线与x轴两个交点,
    ∴当y=0时,方程ax2+bx+c=0有两个不相等的实数根,
    ∴b2﹣4ac>0,故②正确;
    ∵am2+bm=am2+am=a(m+12)2−14a,
    14(a﹣2b)=14(a﹣2a)=−14a,
    ∴am2+bm−14(a﹣2b)=a(m+12)2,
    又∵a<0,m≠−12,
    ∴a(m+12)2<0,
    即am2+bm<14(a﹣2b)(其中m≠−12),故④正确;
    ∵抛物线的对称轴为直线x=−12,且抛物线开口朝下,
    ∴可知二次函数,在x>−12时,y随x的增大而减小,
    ∵x1>x2>1>−12,
    ∴y1<y2,故⑤错误,
    正确的有②③④,共3个,
    故答案为:3.
    【点评】本题考查了二次函数的图象与性质、二次函数和一元二次方程的关系等知识,掌握二次函数的性质,利用数形结合思想解题是关键.
    49.(2022•锦州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣1,0)和点(2,0),以下结论:①abc<0;②4a﹣2b+c<0;③a+b=0;④当x<12时,y随x的增大而减小.其中正确的结论有 ①②③ .(填写代表正确结论的序号)
    【分析】根据二次函数的对称轴位置和抛物线与y轴交点位置确定①③,根据x=﹣2时判定②,由抛物线图象性质判定④.
    【解答】解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故正确;
    ②x=﹣2时,函数值小于0,则4a﹣2b+c<0,故正确;
    ③与x轴交于点(﹣1,0)和点(2,0),则对称轴x=−b2a=−1+22=12,故a+b=0,故③正确;
    ④当x<12时,图象位于对称轴左边,y随x的增大而增大.故④错误;
    综上所述,正确的为①②③.
    故答案为:①②③.
    【点评】本题考查了二次函数的图象和性质,要求熟悉掌握函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.
    50.(2022•呼和浩特)在平面直角坐标系中,点C和点D的坐标分别为(﹣1,﹣1)和(4,﹣1),抛物线y=mx2﹣2mx+2(m≠0)与线段CD只有一个公共点,则m的取值范围是 m=3或﹣1≤m≤−38 .
    【分析】根据抛物线求出对称轴x=1,y轴的交点坐标为(0,2),顶点坐标为(1,2﹣m),直线CD的表达式y=﹣1,分两种情况讨论:m>0时或m<0时,利用抛物线的性质分析求解.
    【解答】解:抛物线的对称轴为:x=−−2m2m=1,
    当x=0时,y=2,
    ∴抛物线与y轴的交点坐标为(0,2),顶点坐标为(1,2﹣m),直线CD的表达式y=﹣1,
    当m>0时,且抛物线过点D(4,﹣1)时,
    16m﹣8m+2=﹣1,
    解得:m=−38(不符合题意,舍去),
    当抛物线经过点(﹣1,﹣1)时,
    m+2m+2=﹣1,
    解得:m=﹣1(不符合题意,舍去),
    当m>0且抛物线的顶点在线段CD上时,
    2﹣m=﹣1,
    解得:m=3,
    当m<0时,且抛物线过点D(4,﹣1)时,
    16m﹣8m+2=﹣1,
    解得:m=−38,
    当抛物线经过点(﹣1,﹣1)时,
    m+2m+2=﹣1,
    解得:m=﹣1,
    综上,m的取值范围为m=3或﹣1≤m≤−38,
    故答案为:m=3或﹣1≤m≤−38.
    【点评】本题考查了二次函数的性质,理解对称轴的含义,熟练掌握二次函数的性质,巧妙运用分类讨论思想解决问题是解题的关键.
    51.(2022•湘西州)已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是 −294<b<﹣1 .
    【分析】解方程﹣x2+4x+5=0得A(﹣1,0),B(5,0),再利用折叠的性质求出折叠部分的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),然后求出直线y=﹣x+b经过点A(﹣1,0)时b的值和当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时b的值,从而得到当直线y=﹣x+b与新图象有4个交点时,b的取值范围.
    【解答】解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),
    将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),
    即y=x2﹣4x﹣5(﹣1≤x≤5),
    当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;
    当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=−294,
    所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为−294<b<﹣1.
    故答案为:−294<b<﹣1.
    【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象与几何变换.
    52.(2022•荆门)如图,函数y=x2−2x+3(x<2)−34x+92(x≥2)的图象由抛物线的一部分和一条射线组成,且与直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3).设t=x1y1+x2y2x3y3,则t的取值范围是 35<t<1 .
    【分析】根据A、B关于对称轴x=1对称,可知x1+x2=2,由直线y=m(m为常数)相交于三个不同的点,可以求出x3的取值范围,进而求出t的范围.
    【解答】解:由二次函数y=x2﹣2x+3(x<2)可知:图象开口向上,对称轴为x=1,
    ∴当x=1时函数有最小值为2,x1+x2=2,
    由一次函数y=−34x+92(x≥2)可知当x=2时有最大值3,当y=2时x=103,
    ∵直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3),
    ∴y1=y2=y3=m,2<m<3,
    ∴2<x3<103,
    ∴t=x1+x2x3=2x3,
    ∴35<t<1.
    故答案为:35<t<1.
    【点评】本题考查了二次函数的性质,函数的取值范围,数形结合的数学思想,关键是利用图象的特点表示出各个变量的取值范围.
    三.解答题(共8小题)
    53.(2023•黑龙江)如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点.交y轴于点C.
    (1)求抛物线的解析式;
    (2)抛物线上是否存在一点P,使得S△PBC=12S△ABC,若存在,请直接写出点P的坐标;若不存在,请说明理由.
    【分析】(1)把A(﹣3,0),B(1,0)两点,代入抛物线y=ax2+bx+3,解方程组即可得到抛物线的解析式;
    (2)分别求得A、B、C的坐标,与BC的解析式y=﹣3x+3;作PE∥x轴交BC于E,设点P的横坐标为t,分别求得P点坐标为(t,﹣t2﹣2t+3)与E点坐标为(t2+2t3,﹣t2﹣2t+3);然后利用S△PBC=12S△ABC列方程解答即可.
    【解答】解:(1)由抛物线与x轴交于A(﹣3,0),B(1,0)两点,代入抛物线y=ax2+bx+3得:
    (−3)2a−3b+3=0a+b+3=0,
    解得:a=−1b=−2;
    ∴抛物线的解析式为y=﹣x2﹣2x+3;
    (2)存在,理由如下:
    ∵A(﹣3,0),B(1,0),
    ∴AB=4,
    抛物线y=ax2+bx+3与y轴交于点C,
    令x=0,则y=3,
    ∴C点坐标为(0,3),OC=3,
    ∴S△ABC=12AB•OC=12×4×3=6,
    ∴S△PBC=12S△ABC=3;
    作PE∥x轴交BC于E,如图:
    设BC的解析式为:y=kx+b,将B、C代入得:
    k+b=03=b,
    解得:k=−3b=3,
    ∴BC的解析式为:y=﹣3x+3;
    设点P的横坐标为t,则P(t,﹣t2﹣2t+3),
    则E的横坐标为:﹣3x+3=﹣t2﹣2t+3,解得:x=t2+2t3,
    ∴E(t2+2t3,﹣t2﹣2t+3);
    ∴PE=t2+2t3−t=t2−t3,
    ∴S△PBC=12×t2−t3×3=3,
    解得:t=﹣2或3;
    ∴P点纵坐标为:﹣(﹣2)2﹣2×(﹣2)+3=3;或﹣(3)2﹣2×(3)+3=﹣12,
    ∴点P的坐标为(﹣2,3)或(3,﹣12).
    【点评】本题考查二次函数综合应用,涉及待定系数法,直角三角形的判定等,解题的关键是方程思想的应用.
    54.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.
    (1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.
    (2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.
    (3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.
    【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;
    (2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;
    (3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.
    【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),
    ∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.
    ∴抛物线的对称轴为直线x=−b2a=32.
    (2)把y1=2(x﹣h)2﹣2化成一般式得,
    y1=2x2﹣4hx+2h2﹣2.
    ∴b=﹣4h,c=2h2﹣2.
    ∴b+c=2h2﹣4h﹣2
    =2(h﹣1)2﹣4.
    把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,
    ∴当h=1时,b+c的最小值是﹣4.
    (3)由题意得,y=y1﹣y2
    =2(x﹣m) (x﹣m﹣2)﹣(x﹣m)
    = (x﹣m)[2(x﹣m)﹣5].
    ∵函数y的图象经过点 (x0,0),
    ∴(x0﹣m)[2(x0﹣m)﹣5]=0.
    ∴x0﹣m=0,或2(x0﹣m)﹣5=0.
    即x0﹣m=0或x0﹣m=52.
    【点评】本题考查了二次函数表达式的三种形式,即一般式:y=ax2+bx+c,顶点式:y=a(x﹣h)2+k,交点式:y=a(x﹣x1)(x﹣x2).
    55.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).
    (1)求m的值;
    (2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.
    【分析】(1)将(2,4)代入解析式求解.
    (2)由判别式Δ的符号可判断抛物线与x轴交点个数.
    【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,
    解得m1=1,m2=﹣3,
    又∵m>0,
    ∴m=1.
    (2)∵m=1,
    ∴y=x2+x﹣2,
    ∵Δ=b2﹣4ac=12+8=9>0,
    ∴二次函数图象与x轴有2个交点.
    【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系.
    56.(2021•乐山)已知关于x的一元二次方程x2+x﹣m=0.
    (1)若方程有两个不相等的实数根,求m的取值范围;
    (2)二次函数y=x2+x﹣m的部分图象如图所示,求一元二次方程x2+x﹣m=0的解.
    【分析】(1)由Δ>0即可列不等式得到答案;
    (2)根据抛物线的对称性可得抛物线与x轴的另一个交点,即可得到答案.
    【解答】解:(1)∵一元二次方程x2+x﹣m=0有两个不相等的实数根,
    ∴Δ>0,即1+4m>0,
    ∴m>−14,
    ∴m的取值范围为m>−14;
    (2)二次函数y=x2+x﹣m图象的对称轴为直线x=−12,
    ∴抛物线与x轴两个交点关于直线x=−12对称,
    由图可知抛物线与x轴一个交点为(1,0),
    ∴另一个交点为(﹣2,0),
    ∴一元二次方程x2+x﹣m=0的解为x1=1,x2=﹣2.
    【点评】本题考查一元二次方程及二次函数与二次方程的关系,解题的关键是掌握抛物线的对称性.
    57.(2021•湖州)如图,已知经过原点的抛物线y=2x2+mx与x轴交于另一点A(2,0).
    (1)求m的值和抛物线顶点M的坐标;
    (2)求直线AM的解析式.
    【分析】(1)将A(2,0)代入抛物线解析式即可求出m的值,然后将关系式化为顶点式即可得出顶点坐标;
    (2)设直线AM的解析式为y=kx+b(k≠0),将点A,M的坐标代入即可.
    【解答】解:(1)∵抛物线y=2x2+mx与x轴交于另一点A(2,0),
    ∴2×22+2m=0,
    ∴m=﹣4,
    ∴y=2x2﹣4x
    =2(x﹣1)2﹣2,
    ∴顶点M的坐标为(1,﹣2),
    (2)设直线AM的解析式为y=kx+b(k≠0),
    ∵图象过A(2,0),M(1,﹣2),
    ∴2k+b=0k+b=−2,
    解得k=2b=−4,
    ∴直线AM的解析式为y=2x﹣4.
    【点评】本题主要考查了待定系数法求函数的关系式,以及二次函数顶点式的转化,属于常考题型.
    58.(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.
    (1)求抛物线的解析式;
    (2)求△BOC的面积.
    【分析】(1)根据抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),即可得到关于a、b的方程,从而可以求得a、b的值,然后即可写出抛物线的解析式;
    (2)根据(1)中抛物线的解析式,可以写出点C的坐标,然后再根据点B的坐标,即可得到OC和OB的长,再根据三角形面积公式,即可求得△BOC的面积.
    【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),
    ∴a+b+3=09a−3b+3=0,
    解得a=−1b=−2,
    ∴抛物线的解析式为y=﹣x2﹣2x+3;
    (2)由(1)知,y=﹣x2﹣2x+3,
    ∴点C的坐标为(0,3),
    ∴OC=3,
    ∵点B的坐标为(﹣3,0),
    ∴OB=3,
    ∵∠BOC=90°,
    ∴△BOC的面积是OB⋅OC2=3×32=92.
    【点评】本题考查抛物线与x轴的交点、待定系数法求二次函数解析式、二次函数的性质、三角形的面积,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.
    59.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.
    (1)求a的值.
    (2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.
    【分析】(1)根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值即可.
    (2)将a的值代入,结合抛物线解析式求平移后图象所对应的二次函数的表达式.
    【解答】解:(1)由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).
    ∵对称轴为直线x=2,
    ∴1+a2=2.
    解得a=3;
    (2)由(1)知,a=3,则该抛物线解析式是:y=x²﹣4x+3.
    ∴抛物线向下平移3个单位后经过原点.
    ∴平移后图象所对应的二次函数的表达式是y=x²﹣4x.
    【点评】本题考查了抛物线与x轴的交点,二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.
    60.(2021•云南)已知抛物线y=﹣2x2+bx+c经过点(0,﹣2),当x<﹣4时,y随x的增大而增大,当x>﹣4时,y随x的增大而减小.设r是抛物线y=﹣2x2+bx+c与x轴的交点(交点也称公共点)的横坐标,m=r9+r7−2r5+r3+r−1r9+60r5−1.
    (1)求b、c的值;
    (2)求证:r4﹣2r2+1=60r2;
    (3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你认为正确的那个结论.
    【分析】(1)当x<﹣4时,y随x的增大而增大,当x>﹣4时,y随x的增大而减小,可得对称轴为直线x=﹣4,且抛物线y=﹣2x2+bx+c经过点(0,﹣2),列出方程组即可得答案;
    (2)由r是抛物线y=﹣2x2﹣16x﹣2与x轴的交点的横坐标,可得r2+8r+1=0,r2+1=﹣8r,两边平方得(r2+1)2=(﹣8r)2,r4+2r2+1=64r2,即可得结果r4﹣2r2+1=60r2;
    (3)m>1正确,可用比差法证明,由(2)可得r4﹣62r2+1=0,即r7﹣62r5+r3=0,而m﹣1=r9+r7−2r5+r3+r−1r9+60r5−1−1=rr9+60r5−1,再由r2+8r+1=0,判断r<0,r9+60r5﹣1<0,故rr9+60r5−1>0,从而m>1.
    【解答】(1)解:∵y=﹣2x2+bx+c经过点(0,﹣2),当x<﹣4时,y随x的增大而增大,当x>﹣4时,y随x的增大而减小,即对称轴为直线x=﹣4,
    ∴c=−2−b−4=−4,解得b=−16c=−2;
    (2)证明:由题意,抛物线的解析式为y=﹣2x2﹣16x﹣2,
    ∵r是抛物线y=﹣2x2﹣16x﹣2与x轴的交点的横坐标,
    ∴2r2+16r+2=0,
    ∴r2+8r+1=0,
    ∴r2+1=﹣8r
    ∴(r2+1)2=(﹣8r)2,
    ∴r4+2r2+1=64r2,
    ∴r4﹣2r2+1=60r2;
    (3)m>1正确,理由如下:
    由(2)知:r4﹣2r2+1=60r2;
    ∴r4﹣62r2+1=0,
    ∴r7﹣62r5+r3=0,
    而m﹣1=r9+r7−2r5+r3+r−1r9+60r5−1−1
    =r9+r7−2r5+r3+r−1−(r9+60r5−1)r9+60r5−1
    =r7−62r5+r3+rr9+60r5−1
    =rr9+60r5−1,
    由(2)知:r2+8r+1=0,
    ∴8r=﹣r2﹣1,
    ∵﹣r2﹣1<0,
    ∴8r<0,即r<0,
    ∴r9+60r5﹣1<0,
    ∴rr9+60r5−1>0,
    即m﹣1>0,
    ∴m>1.
    【点评】本题考查二次函数综合知识,涉及二次函数图象上的点坐标、对称轴、增减性、与x轴交点坐标等知识,解题的关键是用比差法时,判断r和r9+60r5﹣1的符号.
    x
    ﹣2
    ﹣1
    0
    1
    y
    0
    4
    6
    6
    x

    ﹣1
    0
    1
    2

    y

    m
    2
    2
    n

    x

    ﹣1
    0
    1
    2
    3

    y

    3
    0
    ﹣1
    m
    3

    x

    ﹣2
    0
    1
    3

    y

    6
    ﹣4
    ﹣6
    ﹣4

    x

    ﹣3
    ﹣2
    ﹣1
    1
    2

    y

    1.875
    3
    m
    1.875
    0

    相关试卷

    专题05不等式与不等式组(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】:

    这是一份专题05不等式与不等式组(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题05不等式与不等式组优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题05不等式与不等式组优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】:

    这是一份专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题32图形的相似优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题32图形的相似优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共126页, 欢迎下载使用。

    专题17二次函数与方程、不等式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】:

    这是一份专题17二次函数与方程、不等式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题17二次函数与方程不等式优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题17二次函数与方程不等式优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map